These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 15468849)
1. Histological evaluation of the early bone response to hydroxyapatite (HA) implanted in rabbit tibia. Khadijah K; Mashita M; Saidu MF; Fazilah F; Khalid KA Med J Malaysia; 2004 May; 59 Suppl B():123-4. PubMed ID: 15468849 [TBL] [Abstract][Full Text] [Related]
2. In vivo evaluation of hydroxyapatite foams. Sepulveda P; Bressiani AH; Bressiani JC; Meseguer L; König B J Biomed Mater Res; 2002 Dec; 62(4):587-92. PubMed ID: 12221707 [TBL] [Abstract][Full Text] [Related]
3. Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia. Zhukauskas R; Dodds RA; Hartill C; Arola T; Cobb RR; Fox C J Biomater Appl; 2010 Mar; 24(7):639-56. PubMed ID: 19581323 [TBL] [Abstract][Full Text] [Related]
4. A comparative study of osseointegration phenomenon in coated and non-coated NiTi implants in a rabbit model. Najafpour HD; Suzina AH; Nizam A; Samsudin AR Med J Malaysia; 2004 May; 59 Suppl B():121-2. PubMed ID: 15468848 [TBL] [Abstract][Full Text] [Related]
5. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity. Malmström J; Adolfsson E; Arvidsson A; Thomsen P Clin Implant Dent Relat Res; 2007 Jun; 9(2):79-88. PubMed ID: 17535331 [TBL] [Abstract][Full Text] [Related]
6. An in vivo study of a locally-manufactured hydroxyapatite-based material as bone replacement material. Abdul Razak NH; Al-Salihi KA; Samsudin AR Med J Malaysia; 2004 May; 59 Suppl B():119-20. PubMed ID: 15468847 [TBL] [Abstract][Full Text] [Related]
7. Histological evaluation of the effects of bioglass, hydroxyapatite, or demineralized freeze-dried bone, grafted alone or as composites, on the healing of tibial defects in rabbits. Kucukkolbasi H; Mutlu N; Isik K; Celik I; Oznurlu Y Saudi Med J; 2009 Mar; 30(3):329-33. PubMed ID: 19271058 [TBL] [Abstract][Full Text] [Related]
8. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. Yang GL; He FM; Hu JA; Wang XX; Zhao SF Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2009 Jun; 107(6):782-9. PubMed ID: 19201624 [TBL] [Abstract][Full Text] [Related]
9. [Animal study of the bone substitute material Ostim within osseous defects in Göttinger minipigs]. Spies C; Schnürer S; Gotterbarm T; Breusch S Z Orthop Unfall; 2008; 146(1):64-9. PubMed ID: 18324584 [TBL] [Abstract][Full Text] [Related]
10. The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: an experimental study in rabbit mandibles. Zhang JC; Lu HY; Lv GY; Mo AC; Yan YG; Huang C Int J Oral Maxillofac Surg; 2010 May; 39(5):469-77. PubMed ID: 20194003 [TBL] [Abstract][Full Text] [Related]
11. The research of degradability of a novel biodegradable coralline hydroxyapatite after implanted into rabbit. Ning Y; Wei T; Defu C; Yonggang X; Da H; Dafu C; Lei S; Zhizhong G J Biomed Mater Res A; 2009 Mar; 88(3):741-6. PubMed ID: 18357581 [TBL] [Abstract][Full Text] [Related]
12. Effect of enamel matrix derivative (Emdogain) on bone defects in rabbit tibias. Cornelini R; Scarano A; Piattelli M; Andreana S; Covani U; Quaranta A; Piattelli A J Oral Implantol; 2004; 30(2):69-73. PubMed ID: 15119455 [TBL] [Abstract][Full Text] [Related]
13. Hydroxyapatite-electroplated cp-titanium implant and its bone integration potentiality: an in vivo study. Badr NA; El Hadary AA Implant Dent; 2007 Sep; 16(3):297-308. PubMed ID: 17846546 [TBL] [Abstract][Full Text] [Related]
14. A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo. Damien E; Hing K; Saeed S; Revell PA J Biomed Mater Res A; 2003 Aug; 66(2):241-6. PubMed ID: 12888993 [TBL] [Abstract][Full Text] [Related]
15. In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia. Schneiders W; Reinstorf A; Biewener A; Serra A; Grass R; Kinscher M; Heineck J; Rehberg S; Zwipp H; Rammelt S J Orthop Res; 2009 Jan; 27(1):15-21. PubMed ID: 18634066 [TBL] [Abstract][Full Text] [Related]
16. Bone formation in the presence of phagocytosable hydroxyapatite particles. Wang JS; Goodman S; Aspenberg P Clin Orthop Relat Res; 1994 Jul; (304):272-9. PubMed ID: 8020228 [TBL] [Abstract][Full Text] [Related]
17. Early bone tissue responses to turned and oxidized implants in the rabbit tibia. Burgos PM; Rasmusson L; Meirelles L; Sennerby L Clin Implant Dent Relat Res; 2008 Sep; 10(3):181-90. PubMed ID: 18218052 [TBL] [Abstract][Full Text] [Related]
18. Tissue reaction and material characteristics of four bone substitutes. Jensen SS; Aaboe M; Pinholt EM; Hjørting-Hansen E; Melsen F; Ruyter IE Int J Oral Maxillofac Implants; 1996; 11(1):55-66. PubMed ID: 8820123 [TBL] [Abstract][Full Text] [Related]
19. Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Walsh WR; Vizesi F; Michael D; Auld J; Langdown A; Oliver R; Yu Y; Irie H; Bruce W Biomaterials; 2008 Jan; 29(3):266-71. PubMed ID: 18029011 [TBL] [Abstract][Full Text] [Related]
20. Bone regeneration around implants using spherical and granular forms of bioactive glass particles. Veis AA; Dabarakis NN; Parisis NA; Tsirlis AT; Karanikola TG; Printza DV Implant Dent; 2006 Dec; 15(4):386-94. PubMed ID: 17172957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]