These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 15468888)
1. Coral--polyhydroxybutrate composite scaffold for tissue engineering: prefabrication properties. Al-Salihi KA; Samsudin AR Med J Malaysia; 2004 May; 59 Suppl B():202-3. PubMed ID: 15468888 [TBL] [Abstract][Full Text] [Related]
2. Tissue-engineered bone via seeding bone marrow stem cell derived osteoblasts into coral: a rat model. Al-Salihi KA Med J Malaysia; 2004 May; 59 Suppl B():200-1. PubMed ID: 15468887 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of suitable biodegradable scaffolds for engineered bone tissue. Phang MY; Ng MH; Tan KK; Aminuddin BS; Ruszymah BH; Fauziah O Med J Malaysia; 2004 May; 59 Suppl B():198-9. PubMed ID: 15468886 [TBL] [Abstract][Full Text] [Related]
4. Tissue engineering scaffolds based on photocured dimethacrylate polymers for in vitro optical imaging. Landis FA; Stephens JS; Cooper JA; Cicerone MT; Lin-Gibson S Biomacromolecules; 2006 Jun; 7(6):1751-7. PubMed ID: 16768394 [TBL] [Abstract][Full Text] [Related]
5. Marrow-derived osteoblasts seeded into porous natural coral to prefabricate a vascularised bone graft in the shape of a human mandibular ramus: experimental study in rabbits. Chen F; Chen S; Tao K; Feng X; Liu Y; Lei D; Mao T Br J Oral Maxillofac Surg; 2004 Dec; 42(6):532-7. PubMed ID: 15544883 [TBL] [Abstract][Full Text] [Related]
6. Segmental bone tissue engineering by seeding osteoblast precursor cells into titanium mesh-coral composite scaffolds. Chen F; Feng X; Wu W; Ouyang H; Gao Z; Cheng X; Hou R; Mao T Int J Oral Maxillofac Surg; 2007 Sep; 36(9):822-7. PubMed ID: 17804199 [TBL] [Abstract][Full Text] [Related]
7. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
8. Bone marrow mesenchymal stem cells differentiation and proliferation on the surface of coral implant. Al-Salihi KA; Samsudin AR Med J Malaysia; 2004 May; 59 Suppl B():45-6. PubMed ID: 15468811 [TBL] [Abstract][Full Text] [Related]
9. Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells. Pamula E; Filová E; Bacáková L; Lisá V; Adamczyk D J Biomed Mater Res A; 2009 May; 89(2):432-43. PubMed ID: 18431773 [TBL] [Abstract][Full Text] [Related]
10. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
11. Developing macroporous bicontinuous materials as scaffolds for tissue engineering. Martina M; Subramanyam G; Weaver JC; Hutmacher DW; Morse DE; Valiyaveettil S Biomaterials; 2005 Oct; 26(28):5609-16. PubMed ID: 15878365 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Oh SH; Park IK; Kim JM; Lee JH Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648 [TBL] [Abstract][Full Text] [Related]
13. Scaffold fabrication by indirect three-dimensional printing. Lee M; Dunn JC; Wu BM Biomaterials; 2005 Jul; 26(20):4281-9. PubMed ID: 15683652 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
15. Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. Arpornmaeklong P; Suwatwirote N; Pripatnanont P; Oungbho K Int J Oral Maxillofac Surg; 2007 Apr; 36(4):328-37. PubMed ID: 17223012 [TBL] [Abstract][Full Text] [Related]
16. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering. Shin M; Abukawa H; Troulis MJ; Vacanti JP J Biomed Mater Res A; 2008 Mar; 84(3):702-9. PubMed ID: 17635029 [TBL] [Abstract][Full Text] [Related]
17. In vitro cytotoxicity evaluation of biomaterials on human osteoblast cells CRL-1543; hydroxyapatite, natural coral and polyhydroxybutarate. Shamsuria O; Fadilah AS; Asiah AB; Rodiah MR; Suzina AH; Samsudin AR Med J Malaysia; 2004 May; 59 Suppl B():174-5. PubMed ID: 15468874 [TBL] [Abstract][Full Text] [Related]
18. Comparison of chitosan scaffold and chitosan-collagen scaffold: a preliminary study. Norazril SA; Aminuddin BS; Norhayati MM; Mazlyzam AL; Fauziah O; Ruszymah BH Med J Malaysia; 2004 May; 59 Suppl B():186-7. PubMed ID: 15468880 [TBL] [Abstract][Full Text] [Related]
19. Polyester scaffolds with bimodal pore size distribution for tissue engineering. Sosnowski S; Woźniak P; Lewandowska-Szumieł M Macromol Biosci; 2006 Jun; 6(6):425-34. PubMed ID: 16761274 [TBL] [Abstract][Full Text] [Related]
20. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Smith IO; McCabe LR; Baumann MJ Int J Nanomedicine; 2006; 1(2):189-94. PubMed ID: 17722535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]