BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 15469259)

  • 1. Competitive 15N kinetic isotope effects of nitrogenase-catalyzed dinitrogen reduction.
    Sra AK; Hu Y; Martin GE; Snow DD; Ribbe MW; Kohen A
    J Am Chem Soc; 2004 Oct; 126(40):12768-9. PubMed ID: 15469259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Several kinetic features of nitrogenase reactions].
    Kochetkov VV; Linde VR; LikhtenshteÄ­n GI
    Mol Biol (Mosk); 1979; 13(2):402-9. PubMed ID: 440307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantum-chemical study of dinitrogen reduction at mononuclear iron-sulfur complexes with hints to the mechanism of nitrogenase.
    Reiher M; Hess BA
    Chemistry; 2002 Dec; 8(23):5332-9. PubMed ID: 12561304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state kinetic studies of dithionite utilization, component protein interaction, and the formation of an oxidized iron protein intermediate during Azotobacter vinelandii nitrogenase catalysis.
    Johnson JL; Tolley AM; Erickson JA; Watt GD
    Biochemistry; 1996 Sep; 35(35):11336-42. PubMed ID: 8784188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cleaving the n,n triple bond: the transformation of dinitrogen to ammonia by nitrogenases.
    Lee CC; Ribbe MW; Hu Y
    Met Ions Life Sci; 2014; 14():147-76. PubMed ID: 25416394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of cyclic and acyclic diazene derivates by Azotobacter vinelandii nitrogenase: diazirine and trans-dimethyldiazene.
    McKenna CE; Simeonov AM; Eran H; Bravo-Leerabhandh M
    Biochemistry; 1996 Apr; 35(14):4502-14. PubMed ID: 8605200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revelations in dinitrogen activation and functionalization by metal complexes.
    Kozak CM; Mountford P
    Angew Chem Int Ed Engl; 2004 Feb; 43(10):1186-9. PubMed ID: 14991778
    [No Abstract]   [Full Text] [Related]  

  • 10. Nitrogenase and homologs.
    Hu Y; Ribbe MW
    J Biol Inorg Chem; 2015 Mar; 20(2):435-45. PubMed ID: 25491285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.
    Brown KA; Harris DF; Wilker MB; Rasmussen A; Khadka N; Hamby H; Keable S; Dukovic G; Peters JW; Seefeldt LC; King PW
    Science; 2016 Apr; 352(6284):448-50. PubMed ID: 27102481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemistry. So that's how it's done--maybe.
    Leigh GJ
    Science; 2003 Jul; 301(5629):55-6. PubMed ID: 12843380
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetics of all stages of electron transfer in nitrogenase in the presence of a photodonor.
    Syrtsova LA; Nadtochenko VA; Timofeeva EA
    Biochemistry (Mosc); 1998 Aug; 63(8):1007-13. PubMed ID: 9767192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping a hydrazine reduction intermediate on the nitrogenase active site.
    Barney BM; Laryukhin M; Igarashi RY; Lee HI; Dos Santos PC; Yang TC; Hoffman BM; Dean DR; Seefeldt LC
    Biochemistry; 2005 Jun; 44(22):8030-7. PubMed ID: 15924422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional calculations on the binding of dinitrogen to the FeFe cofactor in Fe-only nitrogenase: FeFeco(mu 6-N2) as intermediate in nitrogen fixation.
    Cao Z; Zhou Z; Wan H; Zhang Q; Thiel W
    Inorg Chem; 2003 Nov; 42(22):6986-8. PubMed ID: 14577763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N
    Harris DF; Lukoyanov DA; Kallas H; Trncik C; Yang ZY; Compton P; Kelleher N; Einsle O; Dean DR; Hoffman BM; Seefeldt LC
    Biochemistry; 2019 Jul; 58(30):3293-3301. PubMed ID: 31283201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM show it is not an exchangeable nitrogen.
    Lee HI; Benton PM; Laryukhin M; Igarashi RY; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2003 May; 125(19):5604-5. PubMed ID: 12733878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the coordination chemistry and mechanism of biological nitrogen fixation.
    Dance I
    Chem Asian J; 2007 Aug; 2(8):936-46. PubMed ID: 17614310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of thiocyanate, cyanate, and carbon disulfide by nitrogenase: kinetic characterization and EPR spectroscopic analysis.
    Rasche ME; Seefeldt LC
    Biochemistry; 1997 Jul; 36(28):8574-85. PubMed ID: 9214303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic Understanding of N
    Harris DF; Yang ZY; Dean DR; Seefeldt LC; Hoffman BM
    Biochemistry; 2018 Oct; 57(39):5706-5714. PubMed ID: 30183278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.