These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15469272)

  • 1. DNA cleavage induced by thermal electron transfer from a dimeric NADH analogue to acridinium ions in the presence of oxygen.
    Fukuzumi S; Yukimoto K; Ohkubo K
    J Am Chem Soc; 2004 Oct; 126(40):12794-5. PubMed ID: 15469272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA cleavage by UVA irradiation of NADH with dioxygen via radical chain processes.
    Tanaka M; Ohkubo K; Fukuzumi S
    J Phys Chem A; 2006 Sep; 110(38):11214-8. PubMed ID: 16986858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions.
    Fukuzumi S; Kotani H; Lee YM; Nam W
    J Am Chem Soc; 2008 Nov; 130(45):15134-42. PubMed ID: 18937476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive DNA cleavage induced by UVA photoirradiation of NADH without oxygen.
    Tanaka M; Ohkubo K; Fukuzumi S
    J Am Chem Soc; 2006 Sep; 128(38):12372-3. PubMed ID: 16984160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct detection of nucleotide radical cations produced by electron-transfer oxidation of DNA bases with electron-transfer state of 9-mesityl-10-methylacridinium ion and resulting efficient DNA cleavage without oxygen.
    Ohkubo K; Yukimoto K; Fukuzumi S
    Chem Commun (Camb); 2006 Jun; (23):2504-6. PubMed ID: 16758030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of a radical cation of an NADH analogue in two-electron reduction of a protonated p-quinone derivative by an NADH analogue.
    Yuasa J; Yamada S; Fukuzumi S
    Angew Chem Int Ed Engl; 2008; 47(6):1068-71. PubMed ID: 18165966
    [No Abstract]   [Full Text] [Related]  

  • 7. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2.
    Yamakoshi Y; Umezawa N; Ryu A; Arakane K; Miyata N; Goda Y; Masumizu T; Nagano T
    J Am Chem Soc; 2003 Oct; 125(42):12803-9. PubMed ID: 14558828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of electron-transfer reduction of oxygen by hydrogen bond formation of superoxide anion with ammonium ion.
    Ohkubo K; Kitaguchi H; Fukuzumi S
    J Phys Chem A; 2006 Oct; 110(41):11613-6. PubMed ID: 17034154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step versus stepwise mechanism in protonated amino acid-promoted electron-transfer reduction of a quinone by electron donors and two-electron reduction by a dihydronicotinamide adenine dinucleotide analogue. Interplay between electron transfer and hydrogen bonding.
    Yuasa J; Yamada S; Fukuzumi S
    J Am Chem Soc; 2008 Apr; 130(17):5808-20. PubMed ID: 18386924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel bifunctional acridine-acridinium conjugates: synthesis and study of their chromophore-selective electron-transfer and DNA-binding properties.
    Kuruvilla E; Joseph J; Ramaiah D
    J Phys Chem B; 2005 Nov; 109(46):21997-2002. PubMed ID: 16853857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dioxygen activation by mononuclear nonheme iron(II) complexes generates iron-oxygen intermediates in the presence of an NADH analogue and proton.
    Hong S; Lee YM; Shin W; Fukuzumi S; Nam W
    J Am Chem Soc; 2009 Oct; 131(39):13910-1. PubMed ID: 19746912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective oxygenation of 4,4'-dimethylbiphenyl with molecular oxygen, catalyzed by 9-phenyl-10-methylacridinium ion via photoinduced electron transfer.
    Suga K; Ohkubo K; Fukuzumi S
    J Phys Chem A; 2005 Nov; 109(44):10168-75. PubMed ID: 16838937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discriminative protection against hydroxyl and superoxide anion radicals by quercetin in human leucocytes in vitro.
    Wilms LC; Kleinjans JC; Moonen EJ; Briedé JJ
    Toxicol In Vitro; 2008 Mar; 22(2):301-7. PubMed ID: 17959353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Hydroxylation of Benzene to Phenol by Dioxygen with an NADH Analogue.
    Hirose K; Ohkubo K; Fukuzumi S
    Chemistry; 2016 Aug; 22(36):12904-9. PubMed ID: 27465104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct detection of radical cations of NADH analogues.
    Fukuzumi S; Inada O; Suenobu T
    J Am Chem Soc; 2002 Dec; 124(49):14538-9. PubMed ID: 12465955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidations of NADH analogues by cis-[RuIV(bpy)2(py)(O)]2+ occur by hydrogen-atom transfer rather than by hydride transfer.
    Matsuo T; Mayer JM
    Inorg Chem; 2005 Apr; 44(7):2150-8. PubMed ID: 15792449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species generation through NADH oxidation by 6-formylpterin derivatives in the dark.
    Nonogawa M; Pack SP; Arai T; Endo N; Sommani P; Kodaki T; Makino K
    Biochem Biophys Res Commun; 2007 Feb; 353(4):1105-10. PubMed ID: 17207775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of O2 to superoxide anion (O2.-) in water by heteropolytungstate cluster-anions.
    Geletii YV; Hill CL; Atalla RH; Weinstock IA
    J Am Chem Soc; 2006 Dec; 128(51):17033-42. PubMed ID: 17177455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanistic dichotomy in scandium ion-promoted hydride transfer of an NADH analogue: delicate balance between one-step hydride-transfer and electron-transfer pathways.
    Yuasa J; Yamada S; Fukuzumi S
    J Am Chem Soc; 2006 Nov; 128(46):14938-48. PubMed ID: 17105305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible photooxidation of dibenzothiophenes sensitized by 2-(4-methoxyphenyl)-4, 6-diphenylpyrylium: an electron transfer mechanism without involvement of superoxide.
    Che Y; Ma W; Ji H; Zhao J; Zang L
    J Phys Chem B; 2006 Feb; 110(6):2942-8. PubMed ID: 16471905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.