These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 15469306)

  • 1. Density functional calculations of the 13C NMR chemical shifts in (9,0) single-walled carbon nanotubes.
    Zurek E; Autschbach J
    J Am Chem Soc; 2004 Oct; 126(40):13079-88. PubMed ID: 15469306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes.
    Zurek E; Pickard CJ; Walczak B; Autschbach J
    J Phys Chem A; 2006 Nov; 110(43):11995-2004. PubMed ID: 17064188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A density functional study of the 13C NMR chemical shifts in functionalized single-walled carbon nanotubes.
    Zurek E; Pickard CJ; Autschbach J
    J Am Chem Soc; 2007 Apr; 129(14):4430-9. PubMed ID: 17371025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A density functional study of the 13C NMR chemical shifts in fluorinated single-walled carbon nanotubes.
    Zurek E; Pickard CJ; Autschbach J
    J Phys Chem A; 2009 Apr; 113(16):4117-24. PubMed ID: 19239235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical studies on structures, 13C NMR chemical shifts, aromaticity, and chemical reactivity of finite-length open-ended armchair single-walled carbon nanotubes.
    Liu LV; Tian WQ; Chen YK; Zhang YA; Wang YA
    Nanoscale; 2010 Feb; 2(2):254-61. PubMed ID: 20644802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of hydrogen with Pd and Pd/Ni alloy chain-functionalized single walled carbon nanotubes from density functional theory.
    Miao L; Bhethanabotla VR; Ossowski MM; Joseph B
    J Phys Chem B; 2006 Nov; 110(45):22415-25. PubMed ID: 17091983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of SiO2 with single-walled carbon nanotubes.
    Wojdel JC; Bromley ST
    J Phys Chem B; 2005 Feb; 109(4):1387-91. PubMed ID: 16851107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study.
    Barone V; Heyd J; Scuseria GE
    J Chem Phys; 2004 Apr; 120(15):7169-73. PubMed ID: 15267624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.
    Engtrakul C; Davis MF; Gennett T; Dillon AC; Jones KM; Heben MJ
    J Am Chem Soc; 2005 Dec; 127(49):17548-55. PubMed ID: 16332107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion.
    Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J
    J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT studies on armchair (5, 5) SWCNT functionalization. Modification of selected structural and spectroscopic parameters upon two-atom molecule attachment.
    Jankowska M; Kupka T; Stobiński L; Kaminský J
    J Mol Graph Model; 2015 Feb; 55():105-14. PubMed ID: 25437097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the 13C NMR spectroscopy of single-walled carbon nanotubes.
    Besley NA; Titman JJ; Wright MD
    J Am Chem Soc; 2005 Dec; 127(50):17948-53. PubMed ID: 16351126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations.
    Du A; Chen Y; Zhu Z; Lu G; Smith SC
    J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state 13C NMR assignment of carbon resonances on metallic and semiconducting single-walled carbon nanotubes.
    Engtrakul C; Davis MF; Mistry K; Larsen BA; Dillon AC; Heben MJ; Blackburn JL
    J Am Chem Soc; 2010 Jul; 132(29):9956-7. PubMed ID: 20593776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medium density polyethylene composites with functionalized carbon nanotubes.
    Pulikkathara MX; Kuznetsov OV; Peralta IR; Wei X; Khabashesku VN
    Nanotechnology; 2009 May; 20(19):195602. PubMed ID: 19420641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols.
    Abraham RJ; Mobli M
    Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes.
    Stepanian SG; Karachevtsev MV; Glamazda AY; Karachevtsev VA; Adamowicz L
    J Phys Chem A; 2009 Apr; 113(15):3621-9. PubMed ID: 19320448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.