These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 15470690)

  • 1. Novel methods of automated structure elucidation based on 13C NMR spectroscopy.
    Meiler J; Köck M
    Magn Reson Chem; 2004 Dec; 42(12):1042-5. PubMed ID: 15470690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward more reliable 13C and 1H chemical shift prediction: a systematic comparison of neural-network and least-squares regression based approaches.
    Smurnyy YD; Blinov KA; Churanova TS; Elyashberg ME; Williams AJ
    J Chem Inf Model; 2008 Jan; 48(1):128-34. PubMed ID: 18052244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indirectly detected through-bond chemical shift correlation NMR spectroscopy in solids under fast MAS: studies of organic-inorganic hybrid materials.
    Mao K; Wiench JW; Lin VS; Pruski M
    J Magn Reson; 2009 Jan; 196(1):92-5. PubMed ID: 18955001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance validation of neural network based (13)c NMR prediction using a publicly available data source.
    Blinov KA; Smurnyy YD; Elyashberg ME; Churanova TS; Kvasha M; Steinbeck C; Lefebvre BA; Williams AJ
    J Chem Inf Model; 2008 Mar; 48(3):550-5. PubMed ID: 18293952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing unsymmetrical indirect covariance processing to define 15N- 13C connectivity networks.
    Martin GE; Irish PA; Hilton BD; Blinov KA; Williams AJ
    Magn Reson Chem; 2007 Aug; 45(8):624-7. PubMed ID: 17563910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An NMR strategy for obtaining multiple conformational constraints for 15N-13C spin-pair labelled organic solids.
    Madine J; Middleton DA
    Phys Chem Chem Phys; 2006 Nov; 8(44):5223-8. PubMed ID: 17203146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the automatic analysis of (1)H NMR spectra: Part 5. Confirmation of chemical structure with flow-NMR.
    Griffiths L
    Magn Reson Chem; 2006 Jan; 44(1):54-8. PubMed ID: 16329087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of available experimental data on the prediction of 1H NMR chemical shifts by neural networks.
    Binev Y; Corvo M; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):946-9. PubMed ID: 15154761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated structure elucidation of organic molecules from (13)c NMR spectra using genetic algorithms and neural networks.
    Meiler J; Will M
    J Chem Inf Comput Sci; 2001; 41(6):1535-46. PubMed ID: 11749580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-molecule calculation of log p based on molar volume, hydrogen bonds, and simulated 13C NMR spectra.
    Schnackenberg LK; Beger RD
    J Chem Inf Model; 2005; 45(2):360-5. PubMed ID: 15807500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GIAO/DFT evaluation of 13C NMR chemical shifts of selected acetals based on DFT optimized geometries.
    Migda W; Rys B
    Magn Reson Chem; 2004 May; 42(5):459-66. PubMed ID: 15095382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combination of spectral re-alignment and BTEM for the estimation of pure component NMR spectra from multi-component non-reactive and reactive systems.
    Guo L; Sprenger P; Garland M
    Anal Chim Acta; 2008 Feb; 608(1):48-55. PubMed ID: 18206993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks.
    Binev Y; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):940-5. PubMed ID: 15154760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genius: a genetic algorithm for automated structure elucidation from 13C NMR spectra.
    Meiler J; Will M
    J Am Chem Soc; 2002 Mar; 124(9):1868-70. PubMed ID: 11866596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general 13C NMR spectrum predictor using data mining techniques.
    Le Bret C
    SAR QSAR Environ Res; 2000; 11(3-4):211-34. PubMed ID: 10969872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-standard approach for GIAO (13)C NMR calculations.
    Sarotti AM; Pellegrinet SC
    J Org Chem; 2009 Oct; 74(19):7254-60. PubMed ID: 19725561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel estimation of lipophilicity using 13C NMR chemical shifts as molecular descriptor.
    Khadikar PV; Sharma V; Varma RG
    Bioorg Med Chem Lett; 2005 Jan; 15(2):421-5. PubMed ID: 15603965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of aromatic-carbon 13C NMR signals from di-oxygenated alkyl bands by a chemical-shift-anisotropy filter.
    Mao JD; Schmidt-Rohr K
    Solid State Nucl Magn Reson; 2004 Aug; 26(1):36-45. PubMed ID: 15157537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards the automatic analysis of 1H NMR spectra: Part 4--additional requirements of flow-NMR.
    Griffiths L; Horton R
    Magn Reson Chem; 2004 Dec; 42(12):1012-21. PubMed ID: 15390025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct 13C-detection for carbonyl relaxation studies of protein dynamics.
    Pasat G; Zintsmaster JS; Peng JW
    J Magn Reson; 2008 Aug; 193(2):226-32. PubMed ID: 18514001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.