These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 15470721)
1. Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery. El-Ghannam A; Ning CQ; Mehta J J Biomed Mater Res A; 2004 Dec; 71(3):377-90. PubMed ID: 15470721 [TBL] [Abstract][Full Text] [Related]
2. Bone engineering of the rabbit ulna. El-Ghannam A; Cunningham L; Pienkowski D; Hart A J Oral Maxillofac Surg; 2007 Aug; 65(8):1495-502. PubMed ID: 17656274 [TBL] [Abstract][Full Text] [Related]
3. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
4. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
5. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro. El-Ghannam A; Ning CQ J Biomed Mater Res A; 2006 Feb; 76(2):386-97. PubMed ID: 16270343 [TBL] [Abstract][Full Text] [Related]
6. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering. E LL; Xu LL; Wu X; Wang DS; Lv Y; Wang JZ; Liu HC Tissue Eng Part A; 2010 Sep; 16(9):2927-40. PubMed ID: 20486786 [TBL] [Abstract][Full Text] [Related]
7. Mixing conditions for cell scaffolds affect the bone formation induced by bone engineering with human bone marrow stromal cells, beta-tricalcium phosphate granules, and rhBMP-2. Uchida M; Agata H; Sagara H; Shinohara Y; Kagami H; Asahina I J Biomed Mater Res A; 2009 Oct; 91(1):84-91. PubMed ID: 18767063 [TBL] [Abstract][Full Text] [Related]
8. Dissolution kinetics of a Si-rich nanocomposite and its effect on osteoblast gene expression. Gupta G; Kirakodu S; El-Ghannam A J Biomed Mater Res A; 2007 Feb; 80(2):486-96. PubMed ID: 17019725 [TBL] [Abstract][Full Text] [Related]
9. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961 [TBL] [Abstract][Full Text] [Related]
10. Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique. El-Ghannam A; Hart A; White D; Cunningham L J Biomed Mater Res A; 2013 Oct; 101(10):2851-61. PubMed ID: 23504981 [TBL] [Abstract][Full Text] [Related]
11. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model. Liu Y; Lu Y; Tian X; Cui G; Zhao Y; Yang Q; Yu S; Xing G; Zhang B Biomaterials; 2009 Oct; 30(31):6276-85. PubMed ID: 19683811 [TBL] [Abstract][Full Text] [Related]
12. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice. Liang G; Yang Y; Oh S; Ong JL; Zheng C; Ran J; Yin G; Zhou D Biomaterials; 2005 Jul; 26(20):4265-71. PubMed ID: 15683650 [TBL] [Abstract][Full Text] [Related]
13. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation. Liu HW; Chen CH; Tsai CL; Hsiue GH Bone; 2006 Oct; 39(4):825-36. PubMed ID: 16782421 [TBL] [Abstract][Full Text] [Related]
14. Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. Turhani D; Weissenböck M; Stein E; Wanschitz F; Ewers R J Oral Maxillofac Surg; 2007 Mar; 65(3):485-93. PubMed ID: 17307597 [TBL] [Abstract][Full Text] [Related]
15. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. Sohier J; Daculsi G; Sourice S; de Groot K; Layrolle P J Biomed Mater Res A; 2010 Mar; 92(3):1105-14. PubMed ID: 19301273 [TBL] [Abstract][Full Text] [Related]
16. Bony engineering using time-release porous scaffolds to provide sustained growth factor delivery. Szpalski C; Nguyen PD; Cretiu Vasiliu CE; Chesnoiu-Matei I; Ricci JL; Clark E; Smay JE; Warren SM J Craniofac Surg; 2012 May; 23(3):638-44. PubMed ID: 22565873 [TBL] [Abstract][Full Text] [Related]
17. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654 [TBL] [Abstract][Full Text] [Related]
18. Bone morphogenetic protein-2 enhances bone formation when delivered by a synthetic matrix containing hydroxyapatite/tricalciumphosphate. Jung RE; Weber FE; Thoma DS; Ehrbar M; Cochran DL; Hämmerle CH Clin Oral Implants Res; 2008 Feb; 19(2):188-95. PubMed ID: 18067602 [TBL] [Abstract][Full Text] [Related]
19. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]