These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 15470951)
21. Opsin-G11-mediated signaling pathway for photic entrainment of the chicken pineal circadian clock. Kasahara T; Okano T; Haga T; Fukada Y J Neurosci; 2002 Sep; 22(17):7321-5. PubMed ID: 12196552 [TBL] [Abstract][Full Text] [Related]
22. Circadian organization and the role of the pineal in birds. Underwood H; Steele CT; Zivkovic B Microsc Res Tech; 2001 Apr; 53(1):48-62. PubMed ID: 11279670 [TBL] [Abstract][Full Text] [Related]
24. Photoreceptors sensitive for various wave-lengths in the pineal complex and retina of reptiles immunocytochemical localization of opsins. Debreceni K; Fejér Z; Szél A; Röhlich P; Görcs T; Vígh B Neurobiology (Bp); 1998; 6(4):463-5. PubMed ID: 10220785 [No Abstract] [Full Text] [Related]
25. Making (a) sense of non-visual ocular photoreception. Van Gelder RN Trends Neurosci; 2003 Sep; 26(9):458-61. PubMed ID: 12948652 [TBL] [Abstract][Full Text] [Related]
26. Evolution of circadian organization in vertebrates. Menaker M; Moreira LF; Tosini G Braz J Med Biol Res; 1997 Mar; 30(3):305-13. PubMed ID: 9246228 [TBL] [Abstract][Full Text] [Related]
27. Non-visual photoreception by a variety of vertebrate opsins. Kojima D; Fukada Y Novartis Found Symp; 1999; 224():265-79; discussion 279-82. PubMed ID: 10614056 [TBL] [Abstract][Full Text] [Related]
28. Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function. Gothilf Y; Coon SL; Toyama R; Chitnis A; Namboodiri MA; Klein DC Endocrinology; 1999 Oct; 140(10):4895-903. PubMed ID: 10499549 [TBL] [Abstract][Full Text] [Related]
29. Nonvisual ocular photoreception in the mammal. Van Gelder RN Methods Enzymol; 2005; 393():746-55. PubMed ID: 15817322 [TBL] [Abstract][Full Text] [Related]
30. Circadian clock system in the pineal gland. Fukada Y; Okano T Mol Neurobiol; 2002 Feb; 25(1):19-30. PubMed ID: 11890455 [TBL] [Abstract][Full Text] [Related]
31. Circadian biology: the physiology of inner retinal photoreceptors. Douglas R Curr Biol; 2003 Sep; 13(17):R667-9. PubMed ID: 12956968 [TBL] [Abstract][Full Text] [Related]
32. Amphioxus photoreceptors - insights into the evolution of vertebrate opsins, vision and circadian rhythmicity. Pergner J; Kozmik Z Int J Dev Biol; 2017; 61(10-11-12):665-681. PubMed ID: 29319115 [TBL] [Abstract][Full Text] [Related]
33. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Lucas RJ; Douglas RH; Foster RG Nat Neurosci; 2001 Jun; 4(6):621-6. PubMed ID: 11369943 [TBL] [Abstract][Full Text] [Related]
34. The role of retinal photoreceptors in the regulation of circadian rhythms. Paul KN; Saafir TB; Tosini G Rev Endocr Metab Disord; 2009 Dec; 10(4):271-8. PubMed ID: 19777353 [TBL] [Abstract][Full Text] [Related]
35. Vertebrate circadian and photoperiodic systems: role of the pineal gland and melatonin. Underwood H; Goldman BD J Biol Rhythms; 1987; 2(4):279-315. PubMed ID: 2979667 [No Abstract] [Full Text] [Related]