These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15470951)

  • 61. Melanopsin regulates visual processing in the mouse retina.
    Barnard AR; Hattar S; Hankins MW; Lucas RJ
    Curr Biol; 2006 Feb; 16(4):389-95. PubMed ID: 16488873
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Only Known Jawed Vertebrate with Four Eyes and the Bauplan of the Pineal Complex.
    Smith KT; Bhullar BS; Köhler G; Habersetzer J
    Curr Biol; 2018 Apr; 28(7):1101-1107.e2. PubMed ID: 29614279
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The pineal gland from development to function.
    Sapède D; Cau E
    Curr Top Dev Biol; 2013; 106():171-215. PubMed ID: 24290350
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Melanopsin in the circadian timing system.
    Beaulé C; Robinson B; Lamont EW; Amir S
    J Mol Neurosci; 2003; 21(1):73-89. PubMed ID: 14500998
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila.
    Schlichting M; Menegazzi P; Lelito KR; Yao Z; Buhl E; Dalla Benetta E; Bahle A; Denike J; Hodge JJ; Helfrich-Förster C; Shafer OT
    J Neurosci; 2016 Aug; 36(35):9084-96. PubMed ID: 27581451
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The pineal organ as a folded retina: immunocytochemical localization of opsins.
    Vígh B; Röhlich P; Görcs T; Manzano e Silva MJ; Szél A; Fejér Z; Vígh-Teichmann I
    Biol Cell; 1998 Dec; 90(9):653-9. PubMed ID: 10085541
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Both pineal and lateral eyes are needed to sustain daily circulating melatonin rhythms in sea bass.
    Bayarri MJ; Rol de Lama MA; Madrid JA; Sánchez-Vázquez FJ
    Brain Res; 2003 Apr; 969(1-2):175-82. PubMed ID: 12676378
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ocular and extraocular roles of neuropsin in vertebrates.
    Calligaro H; Dkhissi-Benyahya O; Panda S
    Trends Neurosci; 2022 Mar; 45(3):200-211. PubMed ID: 34952723
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rhythm and soul in the avian pineal.
    Natesan A; Geetha L; Zatz M
    Cell Tissue Res; 2002 Jul; 309(1):35-45. PubMed ID: 12111535
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A broad role for melanopsin in nonvisual photoreception.
    Gooley JJ; Lu J; Fischer D; Saper CB
    J Neurosci; 2003 Aug; 23(18):7093-106. PubMed ID: 12904470
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Light sensitivity of the photoperiodic response system in higher vertebrates: wavelength and intensity effects.
    Kumar V; Rani S
    Indian J Exp Biol; 1999 Nov; 37(11):1053-64. PubMed ID: 10783735
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural and functional evolution of the pineal melatonin system in vertebrates.
    Falcón J; Besseau L; Fuentès M; Sauzet S; Magnanou E; Boeuf G
    Ann N Y Acad Sci; 2009 Apr; 1163():101-11. PubMed ID: 19456332
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Avian photoreceptors and their role in the regulation of daily and seasonal physiology.
    Surbhi ; Kumar V
    Gen Comp Endocrinol; 2015 Sep; 220():13-22. PubMed ID: 24929229
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Non-rod, non-cone photoreception in rodents and teleost fish.
    Foster RG; Hankins M; Lucas RJ; Jenkins A; Muñoz M; Thompson S; Appleford JM; Bellingham J
    Novartis Found Symp; 2003; 253():3-23; discussion 23-30, 52-5, 102-9. PubMed ID: 14712912
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The pineal and melatonin: regulators of circadian function in lower vertebrates.
    Underwood H
    Experientia; 1990 Jan; 46(1):120-8. PubMed ID: 2404785
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dissociation between the circadian rhythm of locomotor activity and the pineal clock in the Japanese newt.
    Chiba A; Kikuchi M; Aoki K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Aug; 189(8):655-9. PubMed ID: 12844232
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modeling the role of mid-wavelength cones in circadian responses to light.
    Dkhissi-Benyahya O; Gronfier C; De Vanssay W; Flamant F; Cooper HM
    Neuron; 2007 Mar; 53(5):677-87. PubMed ID: 17329208
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The evolution of asymmetric photosensitive structures in metazoans and the Nodal connection.
    Boutet A
    Mech Dev; 2017 Oct; 147():49-60. PubMed ID: 28986126
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Independence of circadian entrainment state and responses to melatonin in male Siberian hamsters.
    Gorman MR
    BMC Physiol; 2003 Oct; 3():10. PubMed ID: 14527347
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An enigmatic eye: what can we learn?
    Schwab IR; O'Connor GR
    Clin Exp Ophthalmol; 2004 Dec; 32(6):559-60. PubMed ID: 15575822
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.