BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15470953)

  • 1. Multi-oscillatory control of eclosion and oviposition rhythms in Drosophila melanogaster: evidence from limits of entrainment studies.
    Paranjpe DA; Anitha D; Joshi A; Sharma VK
    Chronobiol Int; 2004 Jul; 21(4-5):539-52. PubMed ID: 15470953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entrainment of eclosion rhythm in Drosophila melanogaster populations reared for more than 700 generations in constant light environment.
    Paranjpe DA; Anitha D; Kumar S; Kumar D; Verkhedkar K; Chandrashekaran MK; Joshi A; Sharma VK
    Chronobiol Int; 2003 Nov; 20(6):977-87. PubMed ID: 14680138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does the difference in the timing of eclosion of the fruit fly Drosophila melanogaster reflect differences in the circadian organization?
    Sheeba V; Nihal M; Mathew SJ; Swamy NM; Chandrashekaran MK; Joshi A; Sharma VK
    Chronobiol Int; 2001 Jul; 18(4):601-12. PubMed ID: 11587084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible role of eclosion rhythm in mediating the effects of light-dark environments on pre-adult development in Drosophila melanogaster.
    Paranjpe DA; Anitha D; Chandrashekaran MK; Joshi A; Sharma VK
    BMC Dev Biol; 2005 Feb; 5():5. PubMed ID: 15725348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark regimes for over 330 generations.
    Shindey R; Varma V; Nikhil KL; Sharma VK
    Chronobiol Int; 2017; 34(5):537-550. PubMed ID: 28156168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of photophase and altitude on oviposition rhythm of the himalayan strains of Drosophila ananassae.
    Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(3):389-405. PubMed ID: 17612939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A case for multiple oscillators controlling different circadian rhythms in Drosophila melanogaster.
    Sheeba V; Chandrashekaran MK; Joshi A; Kumar Sharma V
    J Insect Physiol; 2001 Sep; 47(10):1217-1225. PubMed ID: 12770200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhythmic egg-laying behaviour in virgin females of fruit flies Drosophila melanogaster.
    Menon A; Varma V; Sharma VK
    Chronobiol Int; 2014 Apr; 31(3):433-41. PubMed ID: 24328816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light at night alters the parameters of the eclosion rhythm in a tropical fruit fly, Drosophila jambulina.
    Thakurdas P; Sharma S; Vanlalhriatpuia K; Sinam B; Chib M; Shivagaje A; Joshi D
    Chronobiol Int; 2009 Dec; 26(8):1575-86. PubMed ID: 20030541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of light regimes and circadian clocks modulate timing of pre-adult developmental events in Drosophila.
    Yadav P; Thandapani M; Sharma VK
    BMC Dev Biol; 2014 May; 14():19. PubMed ID: 24885932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence of oviposition rhythm in individuals of Drosophila melanogaster reared in an aperiodic environment for several hundred generations.
    Sheeba V; Chandrashekaran MK; Joshi A; Sharma VK
    J Exp Zool; 2001 Sep; 290(5):541-9. PubMed ID: 11555862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental cycles regulate development time via circadian clock mediated gating of adult emergence.
    Srivastava M; James A; Varma V; Sharma VK; Sheeba V
    BMC Dev Biol; 2018 Dec; 18(1):21. PubMed ID: 30577765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations for activity level in Drosophila jambulina perturbed its pacemaker that controls circadian eclosion rhythm.
    Joshi S; Hodgar R; Kanojia M; Chatale B; Parihar V; Joshi DS
    Naturwissenschaften; 2002 Feb; 89(2):67-70. PubMed ID: 12046623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental plasticity of the locomotor activity rhythm of Drosophila melanogaster.
    Sheeba V; Chandrashekaran MK; Joshi A; Sharma VK
    J Insect Physiol; 2002 Jan; 48(1):25-32. PubMed ID: 12770129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection for early and late adult emergence alters the rate of pre-adult development in Drosophila melanogaster.
    Kumar S; Vaze KM; Kumar D; Sharma VK
    BMC Dev Biol; 2006 Nov; 6():57. PubMed ID: 17132160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae.
    Khare PV; Barnabas RJ; Kanojiya M; Kulkarni AD; Joshi DS
    Chronobiol Int; 2002 Nov; 19(6):1041-52. PubMed ID: 12511025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection for Timing of Eclosion Results in Co-evolution of Temperature Responsiveness in
    Abhilash L; Ghosh A; Sheeba V
    J Biol Rhythms; 2019 Dec; 34(6):596-609. PubMed ID: 31608742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of period mutations and light on the activity rhythms of Drosophila melanogaster.
    Power JM; Ringo JM; Dowse HB
    J Biol Rhythms; 1995 Sep; 10(3):267-80. PubMed ID: 7488764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian control of eclosion: interaction between a central and peripheral clock in Drosophila melanogaster.
    Myers EM; Yu J; Sehgal A
    Curr Biol; 2003 Mar; 13(6):526-33. PubMed ID: 12646138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature, photoperiod, and light intensity on the eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae.
    Khare PV; Keny VL; Vanlalnghaka C; Satralkar MK; Kasture MS; Barnabas RJ; Joshi DS
    Chronobiol Int; 2004 May; 21(3):353-65. PubMed ID: 15332442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.