These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15471342)

  • 1. Rapid timescale processes and the role of electronic surface coupling in the photolysis of diatomic ligands from heme proteins.
    Champion PM; Rosca F; Ionascu D; Cao W; Ye X
    Faraday Discuss; 2004; 127():123-35. PubMed ID: 15471342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of coherent reaction dynamics in heme proteins.
    Zhu L; Sage JT; Champion PM
    Science; 1994 Oct; 266(5185):629-32. PubMed ID: 7939716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoexcitation dynamics of NO-bound ferric myoglobin investigated by femtosecond vibrational spectroscopy.
    Park J; Lee T; Park J; Lim M
    J Phys Chem B; 2013 Mar; 117(10):2850-63. PubMed ID: 23432208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A photolysis-triggered heme ligand switch in H93G myoglobin.
    Franzen S; Bailey J; Dyer RB; Woodruff WH; Hu RB; Thomas MR; Boxer SG
    Biochemistry; 2001 May; 40(17):5299-305. PubMed ID: 11318654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast carbon monoxide photolysis and heme spin-crossover in myoglobin via nonadiabatic quantum dynamics.
    Falahati K; Tamura H; Burghardt I; Huix-Rotllant M
    Nat Commun; 2018 Oct; 9(1):4502. PubMed ID: 30374057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast dynamics of myoglobin probed by time-resolved resonance Raman spectroscopy.
    Mizutani Y; Kitagawa T
    Chem Rec; 2001; 1(3):258-75. PubMed ID: 11895123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution.
    Takeuchi S; Tahara T
    J Phys Chem A; 2005 Nov; 109(45):10199-207. PubMed ID: 16833312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved resonance Raman study on ultrafast structural relaxation and vibrational cooling of photodissociated carbonmonoxy myoglobin.
    Kitagawa T; Haruta N; Mizutani Y
    Biopolymers; 2002; 67(4-5):207-13. PubMed ID: 12012433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic studies of myoglobin at low pH: heme ligation kinetics.
    Sage JT; Li PS; Champion PM
    Biochemistry; 1991 Feb; 30(5):1237-47. PubMed ID: 1991103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species.
    Franzen S; Bohn B; Poyart C; Martin JL
    Biochemistry; 1995 Jan; 34(4):1224-37. PubMed ID: 7827072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants.
    Peterson ES; Friedman JM; Chien EY; Sligar SG
    Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical control of excited-state vibrational coherences of a molecule in solution: The influence of the excitation pulse spectrum and phase in LD690.
    Florean AC; Carroll EC; Spears KG; Sension RJ; Bucksbaum PH
    J Phys Chem B; 2006 Oct; 110(40):20023-31. PubMed ID: 17020390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State preparation and excited electronic and vibrational behavior in hemes.
    Challa JR; Gunaratne TC; Simpson MC
    J Phys Chem B; 2006 Oct; 110(40):19956-65. PubMed ID: 17020382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements.
    Cao W; Ye X; Sjodin T; Christian JF; Demidov AA; Berezhna S; Wang W; Barrick D; Sage JT; Champion PM
    Biochemistry; 2004 Aug; 43(34):11109-17. PubMed ID: 15323570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alignment, vibronic level splitting, and coherent coupling effects on the pump-probe polarization anisotropy.
    Smith ER; Jonas DM
    J Phys Chem A; 2011 Apr; 115(16):4101-13. PubMed ID: 21417384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxy Mb at pH 3. Time-resolved resonance Raman study at cryogenic temperatures.
    Iben IE; Cowen BR; Sanches R; Friedman JM
    Biophys J; 1991 Apr; 59(4):908-19. PubMed ID: 2065191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations of vibrational coherence in the low-frequency region of ferric heme proteins.
    Gruia F; Kubo M; Ye X; Champion PM
    Biophys J; 2008 Mar; 94(6):2252-68. PubMed ID: 18065461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy--interpretation by molecular mechanics.
    Tan ML; Bizzarri AR; Xiao Y; Cannistraro S; Ichiye T; Manzoni C; Cerullo G; Adams MW; Jenney FE; Cramer SP
    J Inorg Biochem; 2007 Mar; 101(3):375-84. PubMed ID: 17204331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.