These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15471344)

  • 21. Potential Energy Landscape of the Electronic States of the GFP Chromophore in Different Protonation Forms: Electronic Transition Energies and Conical Intersections.
    Polyakov IV; Grigorenko BL; Epifanovsky EM; Krylov AI; Nemukhin AV
    J Chem Theory Comput; 2010 Aug; 6(8):2377-87. PubMed ID: 26613493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore.
    Liu XY; Chang XP; Xia SH; Cui G; Thiel W
    J Chem Theory Comput; 2016 Feb; 12(2):753-64. PubMed ID: 26744782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Solvation on Electron Detachment and Excitation Energies of a Green Fluorescent Protein Chromophore Variant.
    Bose S; Chakrabarty S; Ghosh D
    J Phys Chem B; 2016 May; 120(19):4410-20. PubMed ID: 27116477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic excitations of the green fluorescent protein chromophore in its protonation states: SAC/SAC-CI study.
    Das AK; Hasegawa JY; Miyahara T; Ehara M; Nakatsuji H
    J Comput Chem; 2003 Sep; 24(12):1421-31. PubMed ID: 12868107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conical Intersection Accessibility Dictates Brightness in Red Fluorescent Proteins.
    Pieri E; Walker AR; Zhu M; Martínez TJ
    J Am Chem Soc; 2024 Jul; 146(26):17646-17658. PubMed ID: 38885641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Learning for Nonadiabatic Excited-State Dynamics.
    Chen WK; Liu XY; Fang WH; Dral PO; Cui G
    J Phys Chem Lett; 2018 Dec; 9(23):6702-6708. PubMed ID: 30403870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of zwitterions in kindling fluorescent protein photochemistry.
    Mironov VA; Bravaya KB; Nemukhin AV
    J Phys Chem B; 2015 Feb; 119(6):2467-74. PubMed ID: 25365115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interpolated mechanics-molecular mechanics study of internal rotation dynamics of the chromophore unit in blue fluorescent protein and its variants.
    Park JW; Rhee YM
    J Phys Chem B; 2012 Sep; 116(36):11137-47. PubMed ID: 22891786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Volume-conserving photoisomerization of a nonplanar GFP chromophore derivative: Nonadiabatic dynamics simulation.
    Gao A; Wang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():86-94. PubMed ID: 30769155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ground state isomerization of a model green fluorescent protein chromophore.
    He X; Bell AF; Tonge PJ
    FEBS Lett; 2003 Aug; 549(1-3):35-8. PubMed ID: 12914920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states.
    Olsen S; Smith SC
    J Am Chem Soc; 2007 Feb; 129(7):2054-65. PubMed ID: 17253685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct QM/MM excited-state dynamics of retinal protonated Schiff base in isolation and methanol solution.
    Punwong C; Owens J; Martínez TJ
    J Phys Chem B; 2015 Jan; 119(3):704-14. PubMed ID: 25178510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution.
    Martin ME; Negri F; Olivucci M
    J Am Chem Soc; 2004 May; 126(17):5452-64. PubMed ID: 15113217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling Light-Induced Chromophore Hydration in the Reversibly Photoswitchable Fluorescent Protein Dreiklang.
    Grigorenko BL; Polyakov IV; Nemukhin AV
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A QM/MM MD insight into photodynamics of hypoxanthine: distinct nonadiabatic decay behaviors between keto-N7H and keto-N9H tautomers in aqueous solution.
    Guo X; Zhao Y; Cao Z
    Phys Chem Chem Phys; 2014 Aug; 16(29):15381-8. PubMed ID: 24945346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ab initio multiple spawning dynamics using multi-state second-order perturbation theory.
    Tao H; Levine BG; Martínez TJ
    J Phys Chem A; 2009 Dec; 113(49):13656-62. PubMed ID: 19888736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unusual emitting states of the kindling fluorescent protein: appearance of the cationic chromophore in the GFP family.
    Grigorenko BL; Polyakov IV; Savitsky AP; Nemukhin AV
    J Phys Chem B; 2013 Jun; 117(24):7228-34. PubMed ID: 23697758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resolving the ultrafast dynamics of the anionic green fluorescent protein chromophore in water.
    Jones CM; List NH; Martínez TJ
    Chem Sci; 2021 Sep; 12(34):11347-11363. PubMed ID: 34667545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.