These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 15472028)

  • 1. The energetic cost of variations in wing span and wing asymmetry in the zebra finch Taeniopygia guttata.
    Hambly C; Harper EJ; Speakman JR
    J Exp Biol; 2004 Oct; 207(Pt 22):3977-84. PubMed ID: 15472028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The energy cost of loaded flight is substantially lower than expected due to alterations in flight kinematics.
    Hambly C; Harper EJ; Speakman JR
    J Exp Biol; 2004 Oct; 207(Pt 22):3969-76. PubMed ID: 15472027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers.
    Lindhe Norberg UM; Winter Y
    J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contractile activity of the pectoralis in the zebra finch according to mode and velocity of flap-bounding flight.
    Tobalske BW; Puccinelli LA; Sheridan DC
    J Exp Biol; 2005 Aug; 208(Pt 15):2895-901. PubMed ID: 16043594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional kinematics of hummingbird flight.
    Tobalske BW; Warrick DR; Clark CJ; Powers DR; Hedrick TL; Hyder GA; Biewener AA
    J Exp Biol; 2007 Jul; 210(Pt 13):2368-82. PubMed ID: 17575042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from leg to wing forces during take-off in birds.
    Provini P; Tobalske BW; Crandell KE; Abourachid A
    J Exp Biol; 2012 Dec; 215(Pt 23):4115-24. PubMed ID: 22972887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cost of flight in the zebra finch ( Taenopygia guttata): a novel approach based on elimination of (13)C labelled bicarbonate.
    Hambly C; Harper EJ; Speakman JR
    J Comp Physiol B; 2002 Aug; 172(6):529-39. PubMed ID: 12192515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production.
    Riskin DK; Iriarte-Díaz J; Middleton KM; Breuer KS; Swartz SM
    J Exp Biol; 2010 Dec; 213(Pt 23):4110-22. PubMed ID: 21075953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of pectoralis muscle function in budgerigars Melopsitaccus undulatus and zebra finches Taeniopygia guttata in response to changing flight speed.
    Ellerby DJ; Askew GN
    J Exp Biol; 2007 Nov; 210(Pt 21):3789-97. PubMed ID: 17951420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turning manoeuvres in free-flying locusts: high-speed video-monitoring.
    Berger S; Kutsch W
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):127-38. PubMed ID: 12975801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of bird flight.
    Tobalske BW
    J Exp Biol; 2007 Sep; 210(Pt 18):3135-46. PubMed ID: 17766290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
    de Margerie E; Mouret JB; Doncieux S; Meyer JA
    Bioinspir Biomim; 2007 Dec; 2(4):65-82. PubMed ID: 18037730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the cost of short flights in a nectarivorous and a non-nectarivorous bird.
    Hambly C; Pinshow B; Wiersma P; Verhulst S; Piertney SB; Harper EJ; Speakman JR
    J Exp Biol; 2004 Oct; 207(Pt 22):3959-68. PubMed ID: 15472026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of flight muscle power output in budgerigars Melopsittacus undulatus and zebra finches Taeniopygia guttata: in vitro muscle performance.
    Ellerby DJ; Askew GN
    J Exp Biol; 2007 Nov; 210(Pt 21):3780-8. PubMed ID: 17951419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamics of wing-assisted incline running in birds.
    Tobalske BW; Dial KP
    J Exp Biol; 2007 May; 210(Pt 10):1742-51. PubMed ID: 17488937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The aerodynamics of hovering flight in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics and physiology of gait selection in flying birds.
    Tobalske BW
    Physiol Biochem Zool; 2000; 73(6):736-50. PubMed ID: 11121347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurements of the kinematics and dynamics of bat flight.
    Tian X; Iriarte-Diaz J; Middleton K; Galvao R; Israeli E; Roemer A; Sullivan A; Song A; Swartz S; Breuer K
    Bioinspir Biomim; 2006 Dec; 1(4):S10-8. PubMed ID: 17671313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between wingbeat kinematics and vortex wake of a thrush nightingale.
    Rosén M; Spedding GR; Hedenström A
    J Exp Biol; 2004 Nov; 207(Pt 24):4255-68. PubMed ID: 15531647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.