BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15472039)

  • 1. Femtomolar sensitivity of a NO sensor from Clostridium botulinum.
    Nioche P; Berka V; Vipond J; Minton N; Tsai AL; Raman CS
    Science; 2004 Nov; 306(5701):1550-3. PubMed ID: 15472039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the distal heme pocket of H-NOX using fluoride as a probe for H-bonding interactions.
    Kosowicz JG; Boon EM
    J Inorg Biochem; 2013 Sep; 126():91-5. PubMed ID: 23792914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond to second dynamics reveals a structural transition in Clostridium botulinum NO-sensor triggered by the activator BAY-41-2272.
    Yoo BK; Lamarre I; Rappaport F; Nioche P; Raman CS; Martin JL; Negrerie M
    ACS Chem Biol; 2012 Dec; 7(12):2046-54. PubMed ID: 23009307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heme flattening is sufficient for signal transduction in the H-NOX family.
    Muralidharan S; Boon EM
    J Am Chem Soc; 2012 Feb; 134(4):2044-6. PubMed ID: 22257139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H-NOX domains display different tunnel systems for ligand migration.
    Zhang Y; Lu M; Cheng Y; Li Z
    J Mol Graph Model; 2010 Jun; 28(8):814-9. PubMed ID: 20338794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular basis for NO selectivity in soluble guanylate cyclase.
    Boon EM; Huang SH; Marletta MA
    Nat Chem Biol; 2005 Jun; 1(1):53-9. PubMed ID: 16407994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heme-nitrosyls: electronic structure implications for function in biology.
    Hunt AP; Lehnert N
    Acc Chem Res; 2015 Jul; 48(7):2117-25. PubMed ID: 26114618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand discrimination in soluble guanylate cyclase and the H-NOX family of heme sensor proteins.
    Boon EM; Marletta MA
    Curr Opin Chem Biol; 2005 Oct; 9(5):441-6. PubMed ID: 16125437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase.
    Purohit R; Weichsel A; Montfort WR
    Protein Sci; 2013 Oct; 22(10):1439-44. PubMed ID: 23934793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary processes in heme-based sensor proteins.
    Liebl U; Lambry JC; Vos MH
    Biochim Biophys Acta; 2013 Sep; 1834(9):1684-92. PubMed ID: 23485911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic change of heme environment in soluble guanylate cyclase and complexation of NO-independent drug agents with H-NOX domain.
    Alisaraie L; Fu Y; Tuszynski JA
    Chem Biol Drug Des; 2013 Mar; 81(3):359-81. PubMed ID: 23095288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic characterization of the soluble guanylate cyclase-like heme domains from Vibrio cholerae and Thermoanaerobacter tengcongensis.
    Karow DS; Pan D; Tran R; Pellicena P; Presley A; Mathies RA; Marletta MA
    Biochemistry; 2004 Aug; 43(31):10203-11. PubMed ID: 15287748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein.
    Patterson DC; Liu Y; Das S; Yennawar NH; Armache JP; Kincaid JR; Weinert EE
    Biochemistry; 2021 Dec; 60(49):3801-3812. PubMed ID: 34843212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c', Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase.
    Tsai AL; Martin E; Berka V; Olson JS
    Antioxid Redox Signal; 2012 Nov; 17(9):1246-63. PubMed ID: 22356101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into signal transduction involving PAS domain oxygen-sensing heme proteins from the X-ray crystal structure of Escherichia coli Dos heme domain (Ec DosH).
    Park H; Suquet C; Satterlee JD; Kang C
    Biochemistry; 2004 Mar; 43(10):2738-46. PubMed ID: 15005609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel FixL homologues in Chlamydomonas reinhardtii bind heme and O(2).
    Murthy UM; Wecker MS; Posewitz MC; Gilles-Gonzalez MA; Ghirardi ML
    FEBS Lett; 2012 Dec; 586(24):4282-8. PubMed ID: 22801216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoplasmic Heme-Binding Protein (HutX) from Vibrio cholerae Is an Intracellular Heme Transport Protein for the Heme-Degrading Enzyme, HutZ.
    Sekine Y; Tanzawa T; Tanaka Y; Ishimori K; Uchida T
    Biochemistry; 2016 Feb; 55(6):884-93. PubMed ID: 26807477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of the displaceable heme-axial residue in the EcDos protein, a heme-based sensor from Escherichia coli.
    Gonzalez G; Dioum EM; Bertolucci CM; Tomita T; Ikeda-Saito M; Cheesman MR; Watmough NJ; Gilles-Gonzalez MA
    Biochemistry; 2002 Jul; 41(26):8414-21. PubMed ID: 12081490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical investigation on the diatomic ligand migration process and ligand binding properties in non-O2-binding H-NOX domain.
    Zhang Y; Liu L; Wu L; Li S; Li F; Li Z
    Proteins; 2013 Aug; 81(8):1363-76. PubMed ID: 23504767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into the role of iron-histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins.
    Herzik MA; Jonnalagadda R; Kuriyan J; Marletta MA
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):E4156-64. PubMed ID: 25253889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.