BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 15472129)

  • 41. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
    Zarins CK; Giddens DP; Bharadvaj BK; Sottiurai VS; Mabon RF; Glagov S
    Circ Res; 1983 Oct; 53(4):502-14. PubMed ID: 6627609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2017; 45(1-6):319-382. PubMed ID: 29953383
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A 3D-LDA study of the relation between wall shear stress and intimal thickness in a human aortic bifurcation.
    Hayashi K; Yanai Y; Naiki T
    J Biomech Eng; 1996 Aug; 118(3):273-9. PubMed ID: 8872247
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Pathological changes of radial artery used for coronary artery bypass grafting and its related risk factors for intimal hyperplasia].
    Wang HY; Meng Y; Luo XJ; Wang QZ; Sun HS; Ruan YM
    Zhonghua Wai Ke Za Zhi; 2006 Jan; 44(2):83-6. PubMed ID: 16620662
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hemodynamic parameters and early intimal thickening in branching blood vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2001; 29(1):1-64. PubMed ID: 11321642
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of graft geometry on the patency of a systemic-to-pulmonary shunt: a computational fluid dynamics study.
    Waniewski J; Kurowska W; Mizerski JK; Trykozko A; Nowiński K; Brzezińska-Rajszys G; Kościesza A
    Artif Organs; 2005 Aug; 29(8):642-50. PubMed ID: 16048481
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developing pulsatile flow in a deployed coronary stent.
    Rajamohan D; Banerjee RK; Back LH; Ibrahim AA; Jog MA
    J Biomech Eng; 2006 Jun; 128(3):347-59. PubMed ID: 16706584
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of the effects of dynamic change in curvature and torsion on pulsatile flow in a helical tube.
    Selvarasu NK; Tafti DK
    J Biomech Eng; 2012 Jul; 134(7):. PubMed ID: 24763627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress.
    Tada S; Tarbell JM
    Ann Biomed Eng; 2005 Sep; 33(9):1202-12. PubMed ID: 16133927
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of graft-host diameter ratio on the hemodynamics of CABG.
    Qiao A; Liu Y
    Biomed Mater Eng; 2006; 16(3):189-201. PubMed ID: 16518018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanical events within the arterial wall: The dynamic context for elastin fatigue.
    Hodis S; Zamir M
    J Biomech; 2009 May; 42(8):1010-6. PubMed ID: 19386312
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries.
    Rikhtegar F; Knight JA; Olgac U; Saur SC; Poulikakos D; Marshall W; Cattin PC; Alkadhi H; Kurtcuoglu V
    Atherosclerosis; 2012 Apr; 221(2):432-7. PubMed ID: 22317967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of wall shear rate in the human carotid artery by magnetic resonance techniques.
    Stokholm R; Oyre S; Ringgaard S; Flaagoy H; Paaske WP; Pedersen EM
    Eur J Vasc Endovasc Surg; 2000 Nov; 20(5):427-33. PubMed ID: 11112460
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Velocity and wall shear stress patterns in the human right coronary artery.
    Kirpalani A; Park H; Butany J; Johnston KW; Ojha M
    J Biomech Eng; 1999 Aug; 121(4):370-5. PubMed ID: 10464690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computer modeling of fluid dynamics related to a myocardial bridge in a coronary artery.
    Liu H; Yamaguchi T
    Biorheology; 1999; 36(5-6):373-90. PubMed ID: 10818636
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational estimation of fluid mechanical benefits from a fluid deflector at the distal end of artificial vascular grafts.
    Roos MW; Wadbro E; Berggren M
    Comput Biol Med; 2013 Feb; 43(2):164-8. PubMed ID: 23260571
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A full-range, multi-variable, CFD-based methodology to identify abnormal near-wall hemodynamics in a stented coronary artery.
    Murphy JB; Boyle FJ
    Biorheology; 2010; 47(2):117-32. PubMed ID: 20683155
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The initiation of intimal thickening in human arteries.
    Sims FH
    Pathology; 2000 Aug; 32(3):171-5. PubMed ID: 10968389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adventitial macrophage and lymphocyte accumulation accompanying early stages of human coronary atherogenesis.
    Kortelainen ML; Porvari K
    Cardiovasc Pathol; 2014; 23(4):193-7. PubMed ID: 24685316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.