These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 15472363)
1. Comparative analysis of the Schleicher and Schuell IsoCode Stix DNA isolation device and the Qiagen QIAamp DNA Mini Kit. Coyne SR; Craw PD; Norwood DA; Ulrich MP J Clin Microbiol; 2004 Oct; 42(10):4859-62. PubMed ID: 15472363 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples. Dauphin LA; Moser BD; Bowen MD J Microbiol Methods; 2009 Jan; 76(1):30-7. PubMed ID: 18824041 [TBL] [Abstract][Full Text] [Related]
3. Comparison of five commercial DNA extraction kits for the recovery of Yersinia pestis DNA from bacterial suspensions and spiked environmental samples. Dauphin LA; Stephens KW; Eufinger SC; Bowen MD J Appl Microbiol; 2010 Jan; 108(1):163-72. PubMed ID: 19558466 [TBL] [Abstract][Full Text] [Related]
4. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification. Janse I; Hamidjaja RA; Bok JM; van Rotterdam BJ BMC Microbiol; 2010 Dec; 10():314. PubMed ID: 21143837 [TBL] [Abstract][Full Text] [Related]
5. Comparative evaluation of eleven commercial DNA extraction kits for real-time PCR detection of Bacillus anthracis spores in spiked dairy samples. Mertens K; Freund L; Schmoock G; Hänsel C; Melzer F; Elschner MC Int J Food Microbiol; 2014 Jan; 170():29-37. PubMed ID: 24291177 [TBL] [Abstract][Full Text] [Related]
6. A simple method for the rapid removal of Bacillus anthracis spores from DNA preparations. Dauphin LA; Bowen MD J Microbiol Methods; 2009 Feb; 76(2):212-4. PubMed ID: 18996156 [TBL] [Abstract][Full Text] [Related]
7. A novel semiquantitative fluorescence-based multiplex polymerase chain reaction assay for rapid simultaneous detection of bacterial and parasitic pathogens from blood. Selvapandiyan A; Stabler K; Ansari NA; Kerby S; Riemenschneider J; Salotra P; Duncan R; Nakhasi HL J Mol Diagn; 2005 May; 7(2):268-75. PubMed ID: 15858151 [TBL] [Abstract][Full Text] [Related]
8. Detection and fate of Bacillus anthracis (Sterne) vegetative cells and spores added to bulk tank milk. Perdue ML; Karns J; Higgins J; Van Kessel JA J Food Prot; 2003 Dec; 66(12):2349-54. PubMed ID: 14672236 [TBL] [Abstract][Full Text] [Related]
9. Comparison of DNA extraction kits for detection of Burkholderia pseudomallei in spiked human whole blood using real-time PCR. Podnecky NL; Elrod MG; Newton BR; Dauphin LA; Shi J; Chawalchitiporn S; Baggett HC; Hoffmaster AR; Gee JE PLoS One; 2013; 8(2):e58032. PubMed ID: 23460920 [TBL] [Abstract][Full Text] [Related]
10. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples. Létant SE; Kane SR; Murphy GA; Alfaro TM; Hodges LR; Rose LJ; Raber E J Microbiol Methods; 2010 May; 81(2):200-2. PubMed ID: 20193716 [TBL] [Abstract][Full Text] [Related]
11. A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents. Wilson WJ; Erler AM; Nasarabadi SL; Skowronski EW; Imbro PM Mol Cell Probes; 2005 Apr; 19(2):137-44. PubMed ID: 15680215 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the FilmArray® system for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Seiner DR; Colburn HA; Baird C; Bartholomew RA; Straub T; Victry K; Hutchison JR; Valentine N; Bruckner-Lea CJ J Appl Microbiol; 2013 Apr; 114(4):992-1000. PubMed ID: 23279070 [TBL] [Abstract][Full Text] [Related]
13. Comparison of four commercial DNA extraction kits for the recovery of Bacillus spp. spore DNA from spiked powder samples. Mölsä M; Kalin-Mänttäri L; Tonteri E; Hemmilä H; Nikkari S J Microbiol Methods; 2016 Sep; 128():69-73. PubMed ID: 27435532 [TBL] [Abstract][Full Text] [Related]
14. An evaluation of commercial DNA extraction kits for the isolation of bacterial spore DNA from soil. Dineen SM; Aranda R; Anders DL; Robertson JM J Appl Microbiol; 2010 Dec; 109(6):1886-96. PubMed ID: 20666869 [TBL] [Abstract][Full Text] [Related]
15. Molecular detection of anthrax spores on animal fibres. Levi K; Higham JL; Coates D; Hamlyn PF Lett Appl Microbiol; 2003; 36(6):418-22. PubMed ID: 12753252 [TBL] [Abstract][Full Text] [Related]
16. Sensitive and rapid quantitative detection of anthrax spores isolated from soil samples by real-time PCR. Ryu C; Lee K; Yoo C; Seong WK; Oh HB Microbiol Immunol; 2003; 47(10):693-9. PubMed ID: 14605435 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Bacillus anthracis and Yersinia pestis sample collection from nonporous surfaces by quantitative real-time PCR. Hong-Geller E; Valdez YE; Shou Y; Yoshida TM; Marrone BL; Dunbar JM Lett Appl Microbiol; 2010 Apr; 50(4):431-7. PubMed ID: 20184669 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of DNA extraction methods to detect bacterial targets in aerosol samples. Dunbar J; Gallegos-Graves V; Gans J; Morse SA; Pillai S; Anderson K; Hodge DR J Microbiol Methods; 2018 Oct; 153():48-53. PubMed ID: 30201412 [TBL] [Abstract][Full Text] [Related]
20. Detection of spores of Bacillus anthracis from environment using polymerase chain reaction. Alam SI; Agarwal GS; Kamboj DV; Rai GP; Singh L Indian J Exp Biol; 2003 Feb; 41(2):177-80. PubMed ID: 15255613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]