These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 1547238)
1. The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Soriano-Garcia M; Padmanabhan K; de Vos AM; Tulinsky A Biochemistry; 1992 Mar; 31(9):2554-66. PubMed ID: 1547238 [TBL] [Abstract][Full Text] [Related]
2. Structure of Ca2+ prothrombin fragment 1 including the conformation of the Gla domain. Soriano-Garcia M; Park CH; Tulinsky A; Ravichandran KG; Skrzypczak-Jankun E Biochemistry; 1989 Aug; 28(17):6805-10. PubMed ID: 2819034 [TBL] [Abstract][Full Text] [Related]
3. Differences in the metal ion structure between Sr- and Ca-prothrombin fragment 1. Seshadri TP; Skrzypczak-Jankun E; Yin M; Tulinsky A Biochemistry; 1994 Feb; 33(5):1087-92. PubMed ID: 8110739 [TBL] [Abstract][Full Text] [Related]
4. Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin. Arni RK; Padmanabhan K; Padmanabhan KP; Wu TP; Tulinsky A Biochemistry; 1993 May; 32(18):4727-37. PubMed ID: 8387813 [TBL] [Abstract][Full Text] [Related]
5. Homology modeling and molecular dynamics simulation of human prothrombin fragment 1. Li L; Darden T; Foley C; Hiskey R; Pedersen L Protein Sci; 1995 Nov; 4(11):2341-8. PubMed ID: 8563631 [TBL] [Abstract][Full Text] [Related]
6. The PT1-Ca2+ Gla domain binds to a membrane through two dipalmitoylphosphatidylserines. A computational study. RodrÃguez Y; Mezei M; Osman R Biochemistry; 2008 Dec; 47(50):13267-78. PubMed ID: 19086158 [TBL] [Abstract][Full Text] [Related]
7. Trans-cis isomerization of proline 22 in bovine prothrombin fragment 1: a surprising result of structural characterization. Perera L; Darden TA; Pedersen LG Biochemistry; 1998 Aug; 37(31):10920-7. PubMed ID: 9692984 [TBL] [Abstract][Full Text] [Related]
8. Cooperativity in the calcium ion-induced quenching of the intrinsic fluorescence of a series of normal and GLA-deficient bovine prothrombin fragment 1 molecules. Malhotra OP; Valencic F; Fossel ET; Koehler KA J Protein Chem; 1991 Feb; 10(1):31-41. PubMed ID: 2054061 [TBL] [Abstract][Full Text] [Related]
9. Structure of bovine prothrombin fragment 1 refined at 2.25 A resolution. Seshadri TP; Tulinsky A; Skrzypczak-Jankun E; Park CH J Mol Biol; 1991 Jul; 220(2):481-94. PubMed ID: 1856869 [TBL] [Abstract][Full Text] [Related]
10. Structure of prothrombin fragment 1 refined at 2.8 A resolution. Tulinsky A; Park CH; Skrzypczak-Jankun E J Mol Biol; 1988 Aug; 202(4):885-901. PubMed ID: 2845102 [TBL] [Abstract][Full Text] [Related]
11. Solution conformations of the gamma-carboxyglutamic acid domain of bovine prothrombin fragment 1, residues 1-65. Charifson PS; Darden T; Tulinsky A; Hughey JL; Hiskey RG; Pedersen LG Proc Natl Acad Sci U S A; 1991 Jan; 88(2):424-8. PubMed ID: 1988943 [TBL] [Abstract][Full Text] [Related]
12. Structure and order of the protein and carbohydrate domains of prothrombin fragment 1. Harlos K; Boys CW; Holland SK; Esnouf MP; Blake CC FEBS Lett; 1987 Nov; 224(1):97-103. PubMed ID: 3678496 [TBL] [Abstract][Full Text] [Related]
13. Chemical modification of bovine prothrombin fragment 1 in the presence of Tb3+ ions. Sequence studies on 3-gamma-MGlu-fragment. Zapata GA; Berkowitz P; Noyes CM; Pollock JS; Deerfield DW; Pedersen LG; Hiskey RG J Biol Chem; 1988 Jun; 263(17):8150-6. PubMed ID: 3131340 [TBL] [Abstract][Full Text] [Related]
14. Structure of the calcium ion-bound gamma-carboxyglutamic acid-rich domain of factor IX. Freedman SJ; Furie BC; Furie B; Baleja JD Biochemistry; 1995 Sep; 34(38):12126-37. PubMed ID: 7547952 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics simulation of bovine prothrombin fragment 1 in the presence of calcium ions. Hamaguchi N; Charifson P; Darden T; Xiao L; Padmanabhan K; Tulinsky A; Hiskey R; Pedersen L Biochemistry; 1992 Sep; 31(37):8840-8. PubMed ID: 1390671 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein. Shikamoto Y; Morita T; Fujimoto Z; Mizuno H J Biol Chem; 2003 Jun; 278(26):24090-4. PubMed ID: 12695512 [TBL] [Abstract][Full Text] [Related]
17. The contributions of individual gamma-carboxyglutamic acid residues in the calcium-dependent binding of recombinant human protein C to acidic phospholipid vesicles. Zhang L; Castellino FJ J Biol Chem; 1993 Jun; 268(16):12040-5. PubMed ID: 8505327 [TBL] [Abstract][Full Text] [Related]
18. Functions of individual gamma-carboxyglutamic acid (Gla) residues of human protein c. Determination of functionally nonessential Gla residues and correlations with their mode of binding to calcium. Christiansen WT; Tulinsky A; Castellino FJ Biochemistry; 1994 Dec; 33(50):14993-5000. PubMed ID: 7999756 [TBL] [Abstract][Full Text] [Related]
19. Prediction of solution structures of the Ca2+-bound gamma-carboxyglutamic acid domains of protein S and homolog growth arrest specific protein 6: use of the particle mesh Ewald method. Perera L; Li L; Darden T; Monroe DM; Pedersen LG Biophys J; 1997 Oct; 73(4):1847-56. PubMed ID: 9336180 [TBL] [Abstract][Full Text] [Related]
20. Computational studies of human prothrombin fragment 1, the Gla domain of factor IX and several biological interesting mutants. Li L; Darden T; Hiskey R; Pedersen LG Haemostasis; 1996; 26 Suppl 1():54-9. PubMed ID: 8904174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]