BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 15472725)

  • 1. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels.
    Khademhosseini A; Yeh J; Jon S; Eng G; Suh KY; Burdick JA; Langer R
    Lab Chip; 2004 Oct; 4(5):425-30. PubMed ID: 15472725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A soft lithographic approach to fabricate patterned microfluidic channels.
    Khademhosseini A; Suh KY; Jon S; Eng G; Yeh J; Chen GJ; Langer R
    Anal Chem; 2004 Jul; 76(13):3675-81. PubMed ID: 15228340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel single-step fabrication technique to create heterogeneous poly(ethylene glycol) hydrogel microstructures containing multiple phenotypes of mammalian cells.
    Zguris JC; Itle LJ; Koh WG; Pishko MV
    Langmuir; 2005 Apr; 21(9):4168-74. PubMed ID: 15835990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.
    Khademhosseini A; Yeh J; Eng G; Karp J; Kaji H; Borenstein J; Farokhzad OC; Langer R
    Lab Chip; 2005 Dec; 5(12):1380-6. PubMed ID: 16286969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cell-laden microfluidic hydrogel.
    Ling Y; Rubin J; Deng Y; Huang C; Demirci U; Karp JM; Khademhosseini A
    Lab Chip; 2007 Jun; 7(6):756-62. PubMed ID: 17538718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors.
    Koh WG; Pishko MV
    Anal Bioanal Chem; 2006 Aug; 385(8):1389-97. PubMed ID: 16847626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilized culture and transfection microarray of non-adherent cells.
    Yamaguchi S; Matsunuma E; Nagamune T
    Methods Mol Biol; 2011; 706():151-7. PubMed ID: 21104061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterning of proteins and cells on functionalized surfaces prepared by polyelectrolyte multilayers and micromolding in capillaries.
    Shim HW; Lee JH; Hwang TS; Rhee YW; Bae YM; Choi JS; Han J; Lee CS
    Biosens Bioelectron; 2007 Jun; 22(12):3188-95. PubMed ID: 17400439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells.
    Karp JM; Yeh J; Eng G; Fukuda J; Blumling J; Suh KY; Cheng J; Mahdavi A; Borenstein J; Langer R; Khademhosseini A
    Lab Chip; 2007 Jun; 7(6):786-94. PubMed ID: 17538722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid localized cell trapping on biodegradable polymers using cell surface derivatization and microfluidic networking.
    Sinclair J; Salem AK
    Biomaterials; 2006 Mar; 27(9):2090-4. PubMed ID: 16307795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of non-biofouling polyethylene glycol micro- and nanochannels by ultraviolet-assisted irreversible sealing.
    Kim P; Jeong HE; Khademhosseini A; Suh KY
    Lab Chip; 2006 Nov; 6(11):1432-7. PubMed ID: 17066166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverted pattern formation of cell microarrays on poly(ethylene glycol) (PEG) gel patterned surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains.
    Yoshimoto K; Ichino M; Nagasaki Y
    Lab Chip; 2009 May; 9(9):1286-9. PubMed ID: 19370250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic stickers for cell- and tissue-based assays in microchannels.
    Morel M; Bartolo D; Galas JC; Dahan M; Studer V
    Lab Chip; 2009 Apr; 9(7):1011-3. PubMed ID: 19294316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow.
    Plouffe BD; Njoka DN; Harris J; Liao J; Horick NK; Radisic M; Murthy SK
    Langmuir; 2007 Apr; 23(9):5050-5. PubMed ID: 17373836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems.
    Popat KC; Desai TA
    Biosens Bioelectron; 2004 Apr; 19(9):1037-44. PubMed ID: 15018959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.
    Lee HJ; Kim DN; Park S; Lee Y; Koh WG
    Acta Biomater; 2011 Mar; 7(3):1281-9. PubMed ID: 21056702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment.
    Khademhosseini A; Eng G; Yeh J; Fukuda J; Blumling J; Langer R; Burdick JA
    J Biomed Mater Res A; 2006 Dec; 79(3):522-32. PubMed ID: 16788972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.