These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15473196)

  • 1. Computer control using human intracortical local field potentials.
    Kennedy PR; Kirby MT; Moore MM; King B; Mallory A
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):339-44. PubMed ID: 15473196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical VEP-based brain-computer interface.
    Wang Y; Wang R; Gao X; Hong B; Gao S
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):234-9. PubMed ID: 16792302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus.
    Krusienski DJ; Shih JJ
    J Neural Eng; 2011 Apr; 8(2):025006. PubMed ID: 21436521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG based BCI-towards a better control. Brain-computer interface research at Aalborg University.
    Nielsen KD; Cabrera AF; do Nascimento OF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):202-4. PubMed ID: 16792294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate.
    Scherer R; Müller GR; Neuper C; Graimann B; Pfurtscheller G
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):979-84. PubMed ID: 15188868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Wadsworth BCI Research and Development Program: at home with BCI.
    Vaughan TM; McFarland DJ; Schalk G; Sarnacki WA; Krusienski DJ; Sellers EW; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):229-33. PubMed ID: 16792301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research progress on application of brain-computer-interface in mobile peripheral control].
    Li P; Ding H; Wan B; Ming D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Jun; 28(3):613-7. PubMed ID: 21774234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Virtual keyboard" controlled by spontaneous EEG activity.
    Obermaier B; Müller GR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):422-6. PubMed ID: 14960119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 15 years of BCI research at Graz University of Technology: current projects.
    Pfurtscheller G; Müller-Putz GR; Schlögl A; Graimann B; Scherer R; Leeb R; Brunner C; Keinrath C; Lee F; Townsend G; Vidaurre C; Neuper C
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):205-10. PubMed ID: 16792295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECoG factors underlying multimodal control of a brain-computer interface.
    Wilson JA; Felton EA; Garell PC; Schalk G; Williams JC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):246-50. PubMed ID: 16792305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DASHER--an efficient writing system for brain-computer interfaces?
    Wills SA; MacKay DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):244-6. PubMed ID: 16792304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-computer interface technology: a review of the Second International Meeting.
    Vaughan TM; Heetderks WJ; Trejo LJ; Rymer WZ; Weinrich M; Moore MM; Kübler A; Dobkin BH; Birbaumer N; Donchin E; Wolpaw EW; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):94-109. PubMed ID: 12899247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct control of a computer from the human central nervous system.
    Kennedy PR; Bakay RA; Moore MM; Adams K; Goldwaithe J
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):198-202. PubMed ID: 10896186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A brain-computer interface using electrocorticographic signals in humans.
    Leuthardt EC; Schalk G; Wolpaw JR; Ojemann JG; Moran DW
    J Neural Eng; 2004 Jun; 1(2):63-71. PubMed ID: 15876624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-computer interface technology: a review of the first international meeting.
    Wolpaw JR; Birbaumer N; Heetderks WJ; McFarland DJ; Peckham PH; Schalk G; Donchin E; Quatrano LA; Robinson CJ; Vaughan TM
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):164-73. PubMed ID: 10896178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using human extra-cortical local field potentials to control a switch.
    Kennedy P; Andreasen D; Ehirim P; King B; Kirby T; Mao H; Moore M
    J Neural Eng; 2004 Jun; 1(2):72-7. PubMed ID: 15876625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study.
    Sanchez JC; Alba N; Nishida T; Batich C; Carney PR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):217-21. PubMed ID: 16792298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Recent advances in rehabilitation technology: a review of the brain-computer interface].
    Santana D; Ramírez M; Ostrosky-Solís F
    Rev Neurol; 2004 Sep 1-15; 39(5):447-50. PubMed ID: 15378459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.