These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 1547324)
1. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Farge E; Devaux PF Biophys J; 1992 Feb; 61(2):347-57. PubMed ID: 1547324 [TBL] [Abstract][Full Text] [Related]
2. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Mathivet L; Cribier S; Devaux PF Biophys J; 1996 Mar; 70(3):1112-21. PubMed ID: 8785271 [TBL] [Abstract][Full Text] [Related]
3. Phospholipid asymmetry in large unilamellar vesicles induced by transmembrane pH gradients. Hope MJ; Redelmeier TE; Wong KF; Rodrigueza W; Cullis PR Biochemistry; 1989 May; 28(10):4181-7. PubMed ID: 2765480 [TBL] [Abstract][Full Text] [Related]
4. Drug-induced transmembrane lipid scrambling in erythrocytes and in liposomes requires the presence of polyanionic phospholipids. Moreau C; Sulpice JC; Devaux PF; Zachowski A Mol Membr Biol; 1997; 14(1):5-12. PubMed ID: 9160335 [TBL] [Abstract][Full Text] [Related]
5. Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Terasawa H; Nishimura K; Suzuki H; Matsuura T; Yomo T Proc Natl Acad Sci U S A; 2012 Apr; 109(16):5942-7. PubMed ID: 22474340 [TBL] [Abstract][Full Text] [Related]
6. Phospholipid membrane bending as assessed by the shape sequence of giant oblate phospholipid vesicles. Majhenc J; Bozic B; Svetina S; Zeks B Biochim Biophys Acta; 2004 Aug; 1664(2):257-66. PubMed ID: 15328058 [TBL] [Abstract][Full Text] [Related]
7. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312 [TBL] [Abstract][Full Text] [Related]
8. Biophysical properties of membrane lipids of anammox bacteria: I. Ladderane phospholipids form highly organized fluid membranes. Boumann HA; Longo ML; Stroeve P; Poolman B; Hopmans EC; Stuart MC; Sinninghe Damsté JS; Schouten S Biochim Biophys Acta; 2009 Jul; 1788(7):1444-51. PubMed ID: 19376084 [TBL] [Abstract][Full Text] [Related]
9. Kinetic study of the aggregation and lipid mixing produced by alpha-sarcin on phosphatidylglycerol and phosphatidylserine vesicles: stopped-flow light scattering and fluorescence energy transfer measurements. Mancheño JM; Gasset M; Lacadena J; Ramón F; Martínez del Pozo A; Oñaderra M; Gavilanes JG Biophys J; 1994 Sep; 67(3):1117-25. PubMed ID: 7811923 [TBL] [Abstract][Full Text] [Related]
11. Exchange of monooleoylphosphatidylcholine with single egg phosphatidylcholine vesicle membranes. Zhelev DV Biophys J; 1996 Jul; 71(1):257-73. PubMed ID: 8804609 [TBL] [Abstract][Full Text] [Related]
12. A slight asymmetry in the transbilayer distribution of lysophosphatidylcholine alters the surface properties and poly(ethylene glycol)-mediated fusion of dipalmitoylphosphatidylcholine large unilamellar vesicles. Wu H; Zheng L; Lentz BR Biochemistry; 1996 Sep; 35(38):12602-11. PubMed ID: 8823198 [TBL] [Abstract][Full Text] [Related]
13. Shape changes and vesicle fission of giant unilamellar vesicles of liquid-ordered phase membrane induced by lysophosphatidylcholine. Tanaka T; Sano R; Yamashita Y; Yamazaki M Langmuir; 2004 Oct; 20(22):9526-34. PubMed ID: 15491182 [TBL] [Abstract][Full Text] [Related]
14. Interactions of lyso 1-palmitoylphosphatidylcholine with phospholipids: a 13C and 31P NMR study. Bhamidipati SP; Hamilton JA Biochemistry; 1995 Apr; 34(16):5666-77. PubMed ID: 7727427 [TBL] [Abstract][Full Text] [Related]
15. Insights on the interactions of chitosan with phospholipid vesicles. Part II: Membrane stiffening and pore formation. Mertins O; Dimova R Langmuir; 2013 Nov; 29(47):14552-9. PubMed ID: 24168435 [TBL] [Abstract][Full Text] [Related]
16. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Niu SL; Litman BJ Biophys J; 2002 Dec; 83(6):3408-15. PubMed ID: 12496107 [TBL] [Abstract][Full Text] [Related]
17. Shape behavior of lipid vesicles as the basis of some cellular processes. Svetina S; Zeks B Anat Rec; 2002 Nov; 268(3):215-25. PubMed ID: 12382320 [TBL] [Abstract][Full Text] [Related]
18. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914 [TBL] [Abstract][Full Text] [Related]
19. Lipid transfer mediated by a recombinant pro-sterol carrier protein 2 for the accurate preparation of asymmetrical membrane vesicles requires a narrow vesicle size distribution: a free-flow electrophoresis study. Holzer M; Momm J; Schubert R Langmuir; 2010 Mar; 26(6):4142-51. PubMed ID: 20095535 [TBL] [Abstract][Full Text] [Related]
20. Imaging and shape analysis of GUVs as model plasma membranes: effect of trans DOPC on membrane properties. Gudheti MV; Mlodzianoski M; Hess ST Biophys J; 2007 Sep; 93(6):2011-23. PubMed ID: 17513374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]