These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 15473646)
21. Cadmium uptake by different rice genotypes that produce white or dark grains. Cui YJ; Zhu YG; Smith FA; Smith SE J Environ Sci (China); 2004; 16(6):962-7. PubMed ID: 15900729 [TBL] [Abstract][Full Text] [Related]
22. Mobilization and acquisition of sparingly soluble P-sources by Brassica cultivars under P-starved environment I. Differential growth response, P-efficiency characteristics and P-remobilization. Akhtar MS; Oki Y; Adachi T J Integr Plant Biol; 2009 Nov; 51(11):1008-23. PubMed ID: 19903223 [TBL] [Abstract][Full Text] [Related]
23. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Rafique M; Ortas I; Rizwan M; Sultan T; Chaudhary HJ; Işik M; Aydin O Environ Sci Pollut Res Int; 2019 Jul; 26(20):20689-20700. PubMed ID: 31104234 [TBL] [Abstract][Full Text] [Related]
24. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Wang W; Deng Z; Tan H; Cao L Int J Phytoremediation; 2013; 15(5):488-97. PubMed ID: 23488174 [TBL] [Abstract][Full Text] [Related]
25. Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars. Liu W; Liang L; Zhang X; Zhou Q Environ Sci Pollut Res Int; 2015 Jun; 22(11):8432-41. PubMed ID: 25548022 [TBL] [Abstract][Full Text] [Related]
26. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Zhang F; Liu M; Li Y; Che Y; Xiao Y Sci Total Environ; 2019 Mar; 655():1150-1158. PubMed ID: 30577108 [TBL] [Abstract][Full Text] [Related]
27. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Kusznierewicz B; Bączek-Kwinta R; Bartoszek A; Piekarska A; Huk A; Manikowska A; Antonkiewicz J; Namieśnik J; Konieczka P Environ Toxicol Chem; 2012 Nov; 31(11):2482-9. PubMed ID: 22886927 [TBL] [Abstract][Full Text] [Related]
28. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake. Cai Y; Xu W; Wang M; Chen W; Li X; Li Y; Cai Y Environ Pollut; 2019 Oct; 253():959-965. PubMed ID: 31351304 [TBL] [Abstract][Full Text] [Related]
29. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Liang T; Ding H; Wang G; Kang J; Pang H; Lv J Ecotoxicol Environ Saf; 2016 Feb; 124():129-137. PubMed ID: 26513528 [TBL] [Abstract][Full Text] [Related]
30. Combined effect of ultraviolet-B radiation and cadmium contamination on nutrient uptake and photosynthetic pigments in Brassica campestris L. seedlings. Shukla UC; Murthy RC; Kakkar P Environ Toxicol; 2008 Dec; 23(6):712-9. PubMed ID: 18348293 [TBL] [Abstract][Full Text] [Related]
31. Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.). Wang K; Song N; Zhao Q; van der Zee SE Environ Sci Pollut Res Int; 2016 Jan; 23(2):1441-8. PubMed ID: 26370815 [TBL] [Abstract][Full Text] [Related]
32. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Song A; Li Z; Zhang J; Xue G; Fan F; Liang Y J Hazard Mater; 2009 Dec; 172(1):74-83. PubMed ID: 19616891 [TBL] [Abstract][Full Text] [Related]
33. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Cao ZZ; Qin ML; Lin XY; Zhu ZW; Chen MX Environ Pollut; 2018 Jul; 238():76-84. PubMed ID: 29547864 [TBL] [Abstract][Full Text] [Related]
34. Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms. Yao A; Wang Y; Ling X; Chen Z; Tang Y; Qiu H; Ying R; Qiu R Environ Geochem Health; 2017 Apr; 39(2):353-367. PubMed ID: 27530933 [TBL] [Abstract][Full Text] [Related]
35. Endophytic bacterium Buttiauxella sp. SaSR13 improves plant growth and cadmium accumulation of hyperaccumulator Sedum alfredii. Wu K; Luo J; Li J; An Q; Yang X; Liang Y; Li T Environ Sci Pollut Res Int; 2018 Aug; 25(22):21844-21854. PubMed ID: 29796886 [TBL] [Abstract][Full Text] [Related]
36. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements. Rivelli AR; De Maria S; Puschenreiter M; Gherbin P Int J Phytoremediation; 2012 Apr; 14(4):320-34. PubMed ID: 22567714 [TBL] [Abstract][Full Text] [Related]
37. Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth (Amaranthus mangostanus L.). He BY; Yu DP; Chen Y; Shi JL; Xia Y; Li QS; Wang LL; Ling L; Zeng EY Chemosphere; 2017 Mar; 171():588-594. PubMed ID: 28043071 [TBL] [Abstract][Full Text] [Related]
38. Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Gonçalves JF; Antes FG; Maldaner J; Pereira LB; Tabaldi LA; Rauber R; Rossato LV; Bisognin DA; Dressler VL; Flores EM; Nicoloso FT Plant Physiol Biochem; 2009 Sep; 47(9):814-21. PubMed ID: 19419882 [TBL] [Abstract][Full Text] [Related]
39. Molecular dissection of cadmium-responsive transcriptome profile in a low-cadmium-accumulating cultivar of Brassica parachinensis. Zhou Q; Yang Y; Yang Z Ecotoxicol Environ Saf; 2019 Jul; 176():85-94. PubMed ID: 30921700 [TBL] [Abstract][Full Text] [Related]
40. [Effects of Zn on the growth, Cd accumulation and physiological resistance of Iris lactea var. chinensis under Cd stress]. Yuan HY; Huang SZ; Guo Z; Han YL Ying Yong Sheng Tai Xue Bao; 2007 Sep; 18(9):2111-6. PubMed ID: 18062322 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]