These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

826 related articles for article (PubMed ID: 15473713)

  • 1. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction.
    Coriani S; Helgaker T; Jørgensen P; Klopper W
    J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breit interaction contribution to parity violating potentials in chiral molecules containing light nuclei.
    Berger R
    J Chem Phys; 2008 Oct; 129(15):154105. PubMed ID: 19045174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic shielding constants calculated by the infinite-order Douglas-Kroll-Hess method with electron-electron relativistic corrections.
    Seino J; Hada M
    J Chem Phys; 2010 May; 132(17):174105. PubMed ID: 20459154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiconfiguration Dirac-Hartree-Fock adjusted energy-consistent pseudopotential for uranium: spin-orbit configuration interaction and Fock-space coupled-cluster study of U4+ and U5+.
    Weigand A; Cao X; Vallet V; Flament JP; Dolg M
    J Phys Chem A; 2009 Oct; 113(43):11509-16. PubMed ID: 19601603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic energy-consistent pseudopotentials--recent developments.
    Stoll H; Metz B; Dolg M
    J Comput Chem; 2002 Jun; 23(8):767-78. PubMed ID: 12012353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalar Breit interaction for molecular calculations.
    Sun S; Ehrman J; Zhang T; Sun Q; Dyall KG; Li X
    J Chem Phys; 2023 May; 158(17):. PubMed ID: 37139994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relativistic two-component geometric approximation of the electron-positron contribution to magnetic properties in terms of Breit-Pauli spinors.
    Zaccari D; Melo JI; Ruiz de Azúa MC; Giribet CG
    J Chem Phys; 2009 Feb; 130(8):084102. PubMed ID: 19256592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects.
    Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P
    J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations.
    Neese F
    J Chem Phys; 2005 Jan; 122(3):34107. PubMed ID: 15740192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mean field linear response within the elimination of the small component formalism to evaluate relativistic effects on magnetic properties.
    Roura PG; Melo JI; Ruiz de Azúa MC; Giribet CG
    J Chem Phys; 2006 Aug; 125(6):64107. PubMed ID: 16942273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-shell coupled-cluster theory with spin-orbit coupling.
    Wang F; Gauss J; van Wüllen C
    J Chem Phys; 2008 Aug; 129(6):064113. PubMed ID: 18715057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd.
    Peterson KA; Figgen D; Dolg M; Stoll H
    J Chem Phys; 2007 Mar; 126(12):124101. PubMed ID: 17411102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions.
    Kelley MS; Shiozaki T
    J Chem Phys; 2013 May; 138(20):204113. PubMed ID: 23742460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116.
    van Wüllen C; Langermann N
    J Chem Phys; 2007 Mar; 126(11):114106. PubMed ID: 17381195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure of three-dimensional isotropic quantum dots by four-component relativistic coupled cluster methods.
    Yakobi H; Eliav E; Kaldor U
    J Chem Phys; 2011 Feb; 134(5):054503. PubMed ID: 21303134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct perturbation theory in terms of energy derivatives: fourth-order relativistic corrections at the Hartree-Fock level.
    Stopkowicz S; Gauss J
    J Chem Phys; 2011 Feb; 134(6):064114. PubMed ID: 21322668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.