These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15473723)

  • 1. Multiresolution quantum chemistry in multiwavelet bases: Hartree-Fock exchange.
    Yanai T; Fann GI; Gan Z; Harrison RJ; Beylkin G
    J Chem Phys; 2004 Oct; 121(14):6680-8. PubMed ID: 15473723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree-Fock and density functional theory.
    Yanai T; Fann GI; Gan Z; Harrison RJ; Beylkin G
    J Chem Phys; 2004 Aug; 121(7):2866-76. PubMed ID: 15291596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basis set limit Hartree-Fock and density functional theory response property evaluation by multiresolution multiwavelet basis.
    Sekino H; Maeda Y; Yanai T; Harrison RJ
    J Chem Phys; 2008 Jul; 129(3):034111. PubMed ID: 18647020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree-Fock and density functional theory via linear response.
    Yanai T; Fann GI; Beylkin G; Harrison RJ
    Phys Chem Chem Phys; 2015 Dec; 17(47):31405-16. PubMed ID: 25711489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct mapping between exchange potentials of Hartree-Fock and Kohn-Sham schemes as origin of orbital proximity.
    Cinal M
    J Chem Phys; 2010 Jan; 132(1):014101. PubMed ID: 20078143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels.
    Kussmann J; Ochsenfeld C
    J Chem Phys; 2007 Nov; 127(20):204103. PubMed ID: 18052415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Average local ionization energies in the Hartree-Fock and Kohn-Sham theories.
    Bulat FA; Levy M; Politzer P
    J Phys Chem A; 2009 Feb; 113(7):1384-9. PubMed ID: 19170562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear-scaling implementation of molecular electronic self-consistent field theory.
    Sałek P; Høst S; Thøgersen L; Jørgensen P; Manninen P; Olsen J; Jansík B; Reine S; Pawłowski F; Tellgren E; Helgaker T; Coriani S
    J Chem Phys; 2007 Mar; 126(11):114110. PubMed ID: 17381199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiresolution quantum chemistry: basic theory and initial applications.
    Harrison RJ; Fann GI; Yanai T; Gan Z; Beylkin G
    J Chem Phys; 2004 Dec; 121(23):11587-98. PubMed ID: 15634124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Hartree-Fock and Kohn-Sham orbitals in the basis set superposition error for systems linked by hydrogen bonds.
    Garza J; Ramírez JZ; Vargas R
    J Phys Chem A; 2005 Feb; 109(4):643-51. PubMed ID: 16833391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized exchange-correlation potential from second-order self-energy for accurate Kohn-Sham energy gap.
    Fabiano E; Della Sala F
    J Chem Phys; 2007 Jun; 126(21):214102. PubMed ID: 17567185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.
    Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P
    J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between exchange-only optimized potential and Kohn-Sham methods with finite basis sets, and effect of linearly dependent products of orbital basis functions.
    Görling A; Hesselmann A; Jones M; Levy M
    J Chem Phys; 2008 Mar; 128(10):104104. PubMed ID: 18345874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of divide-and-conquer method including Hartree-Fock exchange interaction.
    Akama T; Kobayashi M; Nakai H
    J Comput Chem; 2007 Sep; 28(12):2003-12. PubMed ID: 17455367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open-shell localized Hartree-Fock method based on the generalized adiabatic connection Kohn-Sham formalism for a self-consistent treatment of excited states.
    Vitale V; Della Sala F; Görling A
    J Chem Phys; 2005 Jun; 122(24):244102. PubMed ID: 16035741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VAMPyR-A high-level Python library for mathematical operations in a multiwavelet representation.
    Bjørgve M; Tantardini C; Jensen SR; Gerez S GA; Wind P; Di Remigio Eikås R; Dinvay E; Frediani L
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38666572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elongation cutoff technique armed with quantum fast multipole method for linear scaling.
    Korchowiec J; Lewandowski J; Makowski M; Gu FL; Aoki Y
    J Comput Chem; 2009 Nov; 30(15):2515-25. PubMed ID: 19373839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories.
    Tretiak S; Isborn CM; Niklasson AM; Challacombe M
    J Chem Phys; 2009 Feb; 130(5):054111. PubMed ID: 19206962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A divide and conquer real space finite-element Hartree-Fock method.
    Alizadegan R; Hsia KJ; Martinez TJ
    J Chem Phys; 2010 Jan; 132(3):034101. PubMed ID: 20095722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.