These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 15473749)

  • 41. Statistico-probabilistic approach to taking account of the vapor depletion in the kinetics of homogeneous nucleation: a free-molecular regime of droplet growth.
    Grinin AP; Kuni FM; Djikaev YS
    J Chem Phys; 2004 Jan; 120(4):1846-54. PubMed ID: 15268317
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nucleation of ordered solid phases of proteins via a disordered high-density state: phenomenological approach.
    Pan W; Kolomeisky AB; Vekilov PG
    J Chem Phys; 2005 May; 122(17):174905. PubMed ID: 15910067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gas-liquid nucleation in a two dimensional system.
    Santra M; Chakrabarty S; Bagchi B
    J Chem Phys; 2008 Dec; 129(23):234704. PubMed ID: 19102549
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spinodal-assisted nucleation during symmetry-breaking phase transitions.
    Vega DA; Gómez LR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051607. PubMed ID: 19518467
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The unphysical pinning of the domain growth during the separation of homopolymer blends near the spinodal.
    Fiałkowski M; Hołyst R
    J Chem Phys; 2004 Mar; 120(12):5802-8. PubMed ID: 15267460
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic model for binary homogeneous nucleation in the H2O-H2SO4 system: comparison with experiments and classical theory of nucleation.
    Sorokin A; Vancassel X; Mirabel P
    J Chem Phys; 2005 Dec; 123(24):244508. PubMed ID: 16396550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermodynamics of diamond nucleation on the nanoscale.
    Wang CX; Yang YH; Xu NS; Yang GW
    J Am Chem Soc; 2004 Sep; 126(36):11303-6. PubMed ID: 15355112
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The phase dynamics and wetting layer formation mechanisms in two-step surface-directed spinodal decomposition.
    Yan LT; Xie XM
    J Chem Phys; 2008 Apr; 128(15):154702. PubMed ID: 18433253
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys.
    Kwiatkowski da Silva A; Ponge D; Peng Z; Inden G; Lu Y; Breen A; Gault B; Raabe D
    Nat Commun; 2018 Mar; 9(1):1137. PubMed ID: 29555984
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neutron scattering and monte carlo determination of the variation of the critical nucleus size with quench depth.
    Pan AC; Rappl TJ; Chandler D; Balsara NP
    J Phys Chem B; 2006 Mar; 110(8):3692-6. PubMed ID: 16494425
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computer simulation of nucleation in a gas-saturated liquid.
    Protsenko SP; Baidakov VG; Teterin AS; Zhdanov ER
    J Chem Phys; 2007 Mar; 126(9):094502. PubMed ID: 17362110
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metastable extension of the sublimation curve and the critical contact point.
    Baidakov VG; Protsenko SP
    J Chem Phys; 2006 Jun; 124(23):231101. PubMed ID: 16821898
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Theoretical study of vapor-liquid homogeneous nucleation using stability analysis of a macroscopic phase.
    Carreón-Calderón B
    J Chem Phys; 2012 Oct; 137(14):144104. PubMed ID: 23061836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stresses inside critical nuclei.
    Cacciuto A; Frenkel D
    J Phys Chem B; 2005 Apr; 109(14):6587-94. PubMed ID: 16851739
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A closer look at arrested spinodal decomposition in protein solutions.
    Gibaud T; Schurtenberger P
    J Phys Condens Matter; 2009 Aug; 21(32):322201. PubMed ID: 21693959
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acousto-spinodal decomposition of compressible polymer solutions: early stage analysis.
    Rasouli G; Rey AD
    J Chem Phys; 2011 May; 134(18):184901. PubMed ID: 21568529
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition.
    Wedekind J; Xu L; Buldyrev SV; Stanley HE; Reguera D; Franzese G
    Sci Rep; 2015 Jun; 5():11260. PubMed ID: 26095898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ostwald-like ripening of the anomalous mesoscopic clusters in protein solutions.
    Li Y; Lubchenko V; Vorontsova MA; Filobelo L; Vekilov PG
    J Phys Chem B; 2012 Sep; 116(35):10657-64. PubMed ID: 22889282
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase separation kinetics of polyelectrolyte solutions.
    Kanai S; Muthukumar M
    J Chem Phys; 2007 Dec; 127(24):244908. PubMed ID: 18163707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.