These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15474416)

  • 21. DNA sequence context affects repair of the tobacco-specific adduct O(6)-[4-Oxo-4-(3-pyridyl)butyl]guanine by human O(6)-alkylguanine-DNA alkyltransferases.
    Mijal RS; Kanugula S; Vu CC; Fang Q; Pegg AE; Peterson LA
    Cancer Res; 2006 May; 66(9):4968-74. PubMed ID: 16651455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis?
    Saxowsky TT; Doetsch PW
    Chem Rev; 2006 Feb; 106(2):474-88. PubMed ID: 16464015
    [No Abstract]   [Full Text] [Related]  

  • 23. The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid.
    Naryshkina T; Kuznedelov K; Severinov K
    J Mol Biol; 2006 Aug; 361(4):634-43. PubMed ID: 16781733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential DNA recognition and cleavage by EcoRI dependent on the dynamic equilibrium between the two forms of the malondialdehyde-deoxyguanosine adduct.
    VanderVeen LA; Druckova A; Riggins JN; Sorrells JL; Guengerich FP; Marnett LJ
    Biochemistry; 2005 Apr; 44(13):5024-33. PubMed ID: 15794640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Transcription of chemically modified DNA].
    Gniazdowski M
    Postepy Biochem; 1994; 40(1):22-30. PubMed ID: 7516073
    [No Abstract]   [Full Text] [Related]  

  • 26. Transcriptional pausing caught in the act.
    von Hippel PH
    Cell; 2006 Jun; 125(6):1027-8. PubMed ID: 16777591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta.
    Alt A; Lammens K; Chiocchini C; Lammens A; Pieck JC; Kuch D; Hopfner KP; Carell T
    Science; 2007 Nov; 318(5852):967-70. PubMed ID: 17991862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism for N-acetyl-2-aminofluorene-induced frameshift mutagenesis by Escherichia coli DNA polymerase I (Klenow fragment).
    Gill JP; Romano LJ
    Biochemistry; 2005 Nov; 44(46):15387-95. PubMed ID: 16285743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chemistry of transcription through damaged DNA and of translesion synthesis at atomic resolution.
    Carell T; Cramer P; Hopfner KP
    Nucleic Acids Symp Ser (Oxf); 2007; (51):103. PubMed ID: 18029607
    [No Abstract]   [Full Text] [Related]  

  • 30. Repair of tandem base lesions in DNA by human cell extracts generates persisting single-strand breaks.
    Budworth H; Matthewman G; O'Neill P; Dianov GL
    J Mol Biol; 2005 Sep; 351(5):1020-9. PubMed ID: 16054643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates.
    Jarosz DF; Godoy VG; Delaney JC; Essigmann JM; Walker GC
    Nature; 2006 Jan; 439(7073):225-8. PubMed ID: 16407906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS.
    Kuraoka I; Suzuki K; Ito S; Hayashida M; Kwei JS; Ikegami T; Handa H; Nakabeppu Y; Tanaka K
    DNA Repair (Amst); 2007 Jun; 6(6):841-51. PubMed ID: 17374514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-molecule analysis of RNA polymerase transcription.
    Bai L; Santangelo TJ; Wang MD
    Annu Rev Biophys Biomol Struct; 2006; 35():343-60. PubMed ID: 16689640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
    Hitomi K; Iwai S; Tainer JA
    DNA Repair (Amst); 2007 Apr; 6(4):410-28. PubMed ID: 17208522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks.
    Meddows TR; Savory AP; Grove JI; Moore T; Lloyd RG
    Mol Microbiol; 2005 Jul; 57(1):97-110. PubMed ID: 15948952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversing DNA damage with a directional bias.
    Begley TJ; Samson LD
    Nat Struct Mol Biol; 2004 Aug; 11(8):688-90. PubMed ID: 15280878
    [No Abstract]   [Full Text] [Related]  

  • 37. RPA repair recognition of DNA containing pyrimidines bearing bulky adducts.
    Petruseva IO; Tikhanovich IS; Chelobanov BP; Lavrik OI
    J Mol Recognit; 2008; 21(3):154-62. PubMed ID: 18438969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Specificiety of DNA-protein interactions within transcription complexes of Escherichia coli].
    Ozolin' On; Purtov IuA; Brok-Volchanskiĭ AS; Deev AA; Luk'ianov VI
    Mol Biol (Mosk); 2004; 38(5):786-97. PubMed ID: 15554182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence-specific p53 gene damage by chloroacetaldehyde and its repair kinetics in Escherichia coli.
    Kowalczyk P; Cieśla JM; Saparbaev M; Laval J; Tudek B
    Acta Biochim Pol; 2006; 53(2):337-47. PubMed ID: 16582987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure analysis of DNA lesion repair and tolerance mechanisms.
    Schneider S; Schorr S; Carell T
    Curr Opin Struct Biol; 2009 Feb; 19(1):87-95. PubMed ID: 19200715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.