These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 15474492)
21. Identification of a minimal peptide derived from heptad repeat (HR) 2 of spike protein of SARS-CoV and combination of HR1-derived peptides as fusion inhibitors. Liu IJ; Kao CL; Hsieh SC; Wey MT; Kan LS; Wang WK Antiviral Res; 2009 Jan; 81(1):82-7. PubMed ID: 18983873 [TBL] [Abstract][Full Text] [Related]
22. Serine-scanning mutagenesis studies of the C-terminal heptad repeats in the SARS coronavirus S glycoprotein highlight the important role of the short helical region. Follis KE; York J; Nunberg JH Virology; 2005 Oct; 341(1):122-9. PubMed ID: 16081124 [TBL] [Abstract][Full Text] [Related]
23. Structures and polymorphic interactions of two heptad-repeat regions of the SARS virus S2 protein. Deng Y; Liu J; Zheng Q; Yong W; Lu M Structure; 2006 May; 14(5):889-99. PubMed ID: 16698550 [TBL] [Abstract][Full Text] [Related]
24. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion. Petit CM; Melancon JM; Chouljenko VN; Colgrove R; Farzan M; Knipe DM; Kousoulas KG Virology; 2005 Oct; 341(2):215-30. PubMed ID: 16099010 [TBL] [Abstract][Full Text] [Related]
25. Synthetic peptide studies on the severe acute respiratory syndrome (SARS) coronavirus spike glycoprotein: perspective for SARS vaccine development. Choy WY; Lin SG; Chan PK; Tam JS; Lo YM; Chu IM; Tsai SN; Zhong MQ; Fung KP; Waye MM; Tsui SK; Ng KO; Shan ZX; Yang M; Wu YL; Lin ZY; Ngai SM Clin Chem; 2004 Jun; 50(6):1036-42. PubMed ID: 15044316 [TBL] [Abstract][Full Text] [Related]
26. Synthetic peptides outside the spike protein heptad repeat regions as potent inhibitors of SARS-associated coronavirus. Zheng BJ; Guan Y; Hez ML; Sun H; Du L; Zheng Y; Wong KL; Chen H; Chen Y; Lu L; Tanner JA; Watt RM; Niccolai N; Bernini A; Spiga O; Woo PC; Kung HF; Yuen KY; Huang JD Antivir Ther; 2005; 10(3):393-403. PubMed ID: 15918330 [TBL] [Abstract][Full Text] [Related]
27. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Sainz B; Mossel EC; Gallaher WR; Wimley WC; Peters CJ; Wilson RB; Garry RF Virus Res; 2006 Sep; 120(1-2):146-55. PubMed ID: 16616792 [TBL] [Abstract][Full Text] [Related]
28. Antigenicity and receptor-binding ability of recombinant SARS coronavirus spike protein. Ho TY; Wu SL; Cheng SE; Wei YC; Huang SP; Hsiang CY Biochem Biophys Res Commun; 2004 Jan; 313(4):938-47. PubMed ID: 14706633 [TBL] [Abstract][Full Text] [Related]
29. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. Zhang H; Wang G; Li J; Nie Y; Shi X; Lian G; Wang W; Yin X; Zhao Y; Qu X; Ding M; Deng H J Virol; 2004 Jul; 78(13):6938-45. PubMed ID: 15194770 [TBL] [Abstract][Full Text] [Related]
30. Fusion core structure of the severe acute respiratory syndrome coronavirus (SARS-CoV): in search of potent SARS-CoV entry inhibitors. Chu LH; Chan SH; Tsai SN; Wang Y; Cheng CH; Wong KB; Waye MM; Ngai SM J Cell Biochem; 2008 Aug; 104(6):2335-47. PubMed ID: 18442051 [TBL] [Abstract][Full Text] [Related]
31. Design of recombinant protein-based SARS-CoV entry inhibitors targeting the heptad-repeat regions of the spike protein S2 domain. Ni L; Zhu J; Zhang J; Yan M; Gao GF; Tien P Biochem Biophys Res Commun; 2005 Apr; 330(1):39-45. PubMed ID: 15781229 [TBL] [Abstract][Full Text] [Related]
32. Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein. Guillén J; Kinnunen PK; Villalaín J Biochim Biophys Acta; 2008 Dec; 1778(12):2765-74. PubMed ID: 18721794 [TBL] [Abstract][Full Text] [Related]
34. Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein. Duquerroy S; Vigouroux A; Rottier PJ; Rey FA; Bosch BJ Virology; 2005 May; 335(2):276-85. PubMed ID: 15840526 [TBL] [Abstract][Full Text] [Related]
35. Mapping a neutralizing epitope on the SARS coronavirus spike protein: computational prediction based on affinity-selected peptides. Tarnovitski N; Matthews LJ; Sui J; Gershoni JM; Marasco WA J Mol Biol; 2006 May; 359(1):190-201. PubMed ID: 16630634 [TBL] [Abstract][Full Text] [Related]
36. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design. Aydin H; Al-Khooly D; Lee JE Protein Sci; 2014 May; 23(5):603-17. PubMed ID: 24519901 [TBL] [Abstract][Full Text] [Related]
37. Identification of the membrane-active regions of the severe acute respiratory syndrome coronavirus spike membrane glycoprotein using a 16/18-mer peptide scan: implications for the viral fusion mechanism. Guillén J; Pérez-Berná AJ; Moreno MR; Villalaín J J Virol; 2005 Feb; 79(3):1743-52. PubMed ID: 15650199 [TBL] [Abstract][Full Text] [Related]
38. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Bosch BJ; van der Zee R; de Haan CA; Rottier PJ J Virol; 2003 Aug; 77(16):8801-11. PubMed ID: 12885899 [TBL] [Abstract][Full Text] [Related]
39. Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion. Beniac DR; deVarennes SL; Andonov A; He R; Booth TF PLoS One; 2007 Oct; 2(10):e1082. PubMed ID: 17957264 [TBL] [Abstract][Full Text] [Related]
40. Ezrin interacts with the SARS coronavirus Spike protein and restrains infection at the entry stage. Millet JK; Kien F; Cheung CY; Siu YL; Chan WL; Li H; Leung HL; Jaume M; Bruzzone R; Peiris JS; Altmeyer RM; Nal B PLoS One; 2012; 7(11):e49566. PubMed ID: 23185364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]