These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15474512)

  • 1. Fluorescence labels as sensors for oxygen binding of arthropod hemocyanins.
    Erker W; Schoen A; Basché T; Decker H
    Biochem Biophys Res Commun; 2004 Nov; 324(2):893-900. PubMed ID: 15474512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of single oxygen molecules with fluorescence-labeled hemocyanins.
    Erker W; Sdorra S; Basché T
    J Am Chem Soc; 2005 Oct; 127(42):14532-3. PubMed ID: 16231880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of single oxygen molecules opens up new vistas for the investigation of molecular cooperativity in hemocyanins.
    Tinnefeld P
    Chemphyschem; 2006 Jun; 7(6):1189-91. PubMed ID: 16673435
    [No Abstract]   [Full Text] [Related]  

  • 4. Toward oxygen binding curves of single respiratory proteins.
    Erker W; Lippitz M; Basché T; Decker H
    Micron; 2004; 35(1-2):111-3. PubMed ID: 15036310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based calculation of multi-donor multi-acceptor fluorescence resonance energy transfer in the 4x6-mer tarantula hemocyanin.
    Erker W; Hübler R; Decker H
    Eur Biophys J; 2004 Aug; 33(5):386-95. PubMed ID: 14655028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan-to-dye fluorescence energy transfer applied to oxygen sensing by using type-3 copper proteins.
    Zauner G; Lonardi E; Bubacco L; Aartsma TJ; Canters GW; Tepper AW
    Chemistry; 2007; 13(25):7085-90. PubMed ID: 17577913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan quenching as linear sensor for oxygen binding of arthropod hemocyanins.
    Erker W; Hübler R; Decker H
    Biochim Biophys Acta; 2008 Oct; 1780(10):1143-7. PubMed ID: 18656525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide bond reduction: A powerful, chemical probe for the study of structure-function relationships in the hemocyanins.
    Topham R; Tesh S; Westcott A; Cole G; Mercatante D; Kaufman G; Bonaventura C
    Arch Biochem Biophys; 1999 Sep; 369(2):261-6. PubMed ID: 10486145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences.
    Magnus KA; Hazes B; Ton-That H; Bonaventura C; Bonaventura J; Hol WG
    Proteins; 1994 Aug; 19(4):302-9. PubMed ID: 7984626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary history and diversity of arthropod hemocyanins.
    Burmester T
    Micron; 2004; 35(1-2):121-2. PubMed ID: 15036313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative transition in the conformation of 24-mer tarantula hemocyanin upon oxygen binding.
    Erker W; Beister U; Decker H
    J Biol Chem; 2005 Apr; 280(13):12391-6. PubMed ID: 15695808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-color single-molecule fluorescence resonance energy transfer.
    Clamme JP; Deniz AA
    Chemphyschem; 2005 Jan; 6(1):74-7. PubMed ID: 15688649
    [No Abstract]   [Full Text] [Related]  

  • 13. Fluorescence studies of single biomolecules.
    Li H; Ying L; Ren X; Balasubramanian S; Klenerman D
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):753-6. PubMed ID: 15494006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemocyanin from E. californicum encapsulated in silica gels: oxygen binding and conformational states.
    Ronda L; Faggiano S; Bettati S; Hellmann N; Decker H; Weidenbach T; Mozzarelli A
    Gene; 2007 Aug; 398(1-2):202-7. PubMed ID: 17512140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity.
    Perbandt M; Guthöhrlein EW; Rypniewski W; Idakieva K; Stoeva S; Voelter W; Genov N; Betzel C
    Biochemistry; 2003 Jun; 42(21):6341-6. PubMed ID: 12767214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum mechanical analysis of oxygenated and deoxygenated states of hemocyanin: theoretical clues for a plausible allosteric model of oxygen binding.
    Fariselli P; Bottoni A; Bernardi F; Casadio R
    Protein Sci; 1999 Jul; 8(7):1546-50. PubMed ID: 10422845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interhexameric contacts in the four-hexameric hemocyanin from the tarantula Eurypelma californicum. A tentative mechanism for cooperative behavior.
    de Haas F; van Bruggen EF
    J Mol Biol; 1994 Apr; 237(4):464-78. PubMed ID: 8151706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplified energy transfer in conjugated polymer nanoparticle tags and sensors.
    Tian Z; Yu J; Wu C; Szymanski C; McNeill J
    Nanoscale; 2010 Oct; 2(10):1999-2011. PubMed ID: 20697652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and photophysics of core-substituted naphthalene diimides: fluorophores for single molecule applications.
    Bell TD; Yap S; Jani CH; Bhosale SV; Hofkens J; De Schryver FC; Langford SJ; Ghiggino KP
    Chem Asian J; 2009 Oct; 4(10):1542-50. PubMed ID: 19760701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of effector binding to hemocyanin: influence of temperature.
    Pott A; Menze MA; Grieshaber MK
    Arch Biochem Biophys; 2009 Mar; 483(1):37-44. PubMed ID: 19141291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.