These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

647 related articles for article (PubMed ID: 1547504)

  • 21. Multiple TORC1-associated proteins regulate nitrogen starvation-dependent cellular differentiation in Saccharomyces cerevisiae.
    Laxman S; Tu BP
    PLoS One; 2011; 6(10):e26081. PubMed ID: 22043304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae.
    Kron SJ; Styles CA; Fink GR
    Mol Biol Cell; 1994 Sep; 5(9):1003-22. PubMed ID: 7841518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational analysis of morphologic differentiation in Saccharomyces cerevisiae.
    Blacketer MJ; Madaule P; Myers AM
    Genetics; 1995 Aug; 140(4):1259-75. PubMed ID: 7498768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae.
    Palecek SP; Parikh AS; Kron SJ
    Genetics; 2000 Nov; 156(3):1005-23. PubMed ID: 11063681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RAM pathway contributes to Rpb4 dependent pseudohyphal differentiation in Saccharomyces cerevisiae.
    Verma-Gaur J; Deshpande S; Sadhale PP
    Fungal Genet Biol; 2008 Oct; 45(10):1373-9. PubMed ID: 18687406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversible pseudohyphal growth in haploid Saccharomyces cerevisiae is an aerobic process.
    Wright RM; Repine T; Repine JE
    Curr Genet; 1993; 23(5-6):388-91. PubMed ID: 8319293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of pseudohyphae formation in Saccharomyces cerevisiae.
    Gancedo JM
    FEMS Microbiol Rev; 2001 Jan; 25(1):107-23. PubMed ID: 11152942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Saccharomyces cerevisiae mutation elm4-1 facilitates pseudohyphal differentiation and interacts with a deficiency in phosphoribosylpyrophosphate synthase activity to cause constitutive pseudohyphal growth.
    Blacketer MJ; Madaule P; Myers AM
    Mol Cell Biol; 1994 Jul; 14(7):4671-81. PubMed ID: 8007970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1.
    Bender A; Pringle JR
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9976-80. PubMed ID: 2690082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcript and proteomic analyses of wild-type and gpa2 mutant Saccharomyces cerevisiae strains suggest a role for glycolytic carbon source sensing in pseudohyphal differentiation.
    Medintz IL; Vora GJ; Rahbar AM; Thach DC
    Mol Biosyst; 2007 Sep; 3(9):623-34. PubMed ID: 17700863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple functions for actin during filamentous growth of Saccharomyces cerevisiae.
    Cali BM; Doyle TC; Botstein D; Fink GR
    Mol Biol Cell; 1998 Jul; 9(7):1873-89. PubMed ID: 9658177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The translation termination factor eRF1 (Sup45p) of Saccharomyces cerevisiae is required for pseudohyphal growth and invasion.
    Petrova A; Kiktev D; Askinazi O; Chabelskaya S; Moskalenko S; Zemlyanko O; Zhouravleva G
    FEMS Yeast Res; 2015 Jun; 15(4):fov033. PubMed ID: 26054854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology.
    Casalone E; Barberio C; Cappellini L; Polsinelli M
    Res Microbiol; 2005 Mar; 156(2):191-200. PubMed ID: 15748984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae.
    Lorenz MC; Cutler NS; Heitman J
    Mol Biol Cell; 2000 Jan; 11(1):183-99. PubMed ID: 10637301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The roles of bud-site-selection proteins during haploid invasive growth in yeast.
    Cullen PJ; Sprague GF
    Mol Biol Cell; 2002 Sep; 13(9):2990-3004. PubMed ID: 12221111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth.
    Kumar A
    Annu Rev Genet; 2021 Nov; 55():1-21. PubMed ID: 34280314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BUD2 encodes a GTPase-activating protein for Bud1/Rsr1 necessary for proper bud-site selection in yeast.
    Park HO; Chant J; Herskowitz I
    Nature; 1993 Sep; 365(6443):269-74. PubMed ID: 8371782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Germ tube growth of Candida albicans.
    Gow NA
    Curr Top Med Mycol; 1997 Dec; 8(1-2):43-55. PubMed ID: 9504066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetrically localized Bud8p and Bud9p proteins control yeast cell polarity and development.
    Taheri N; Köhler T; Braus GH; Mösch HU
    EMBO J; 2000 Dec; 19(24):6686-96. PubMed ID: 11118203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient construction of homozygous diploid strains identifies genes required for the hyper-filamentous phenotype in Saccharomyces cerevisiae.
    Furukawa K; Furukawa T; Hohmann S
    PLoS One; 2011; 6(10):e26584. PubMed ID: 22039512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.