BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 15475049)

  • 1. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents.
    Chen Y; Miao X
    Biomaterials; 2005 Apr; 26(11):1205-10. PubMed ID: 15475049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering.
    Rouahi M; Champion E; Gallet O; Jada A; Anselme K
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):10-9. PubMed ID: 16387480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sintering behaviour of hydroxyapatite bioceramics.
    Ramesh S; Tan CY; Aw KL; Yeo WH; Hamdi M; Sopyan I; Teng WD
    Med J Malaysia; 2008 Jul; 63 Suppl A():89-90. PubMed ID: 19024998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of silicon content on the sintering and biological behaviour of Ca10(PO4)(6-x)(SiO4)x(OH)(2-x) ceramics.
    Palard M; Combes J; Champion E; Foucaud S; Rattner A; Bernache-Assollant D
    Acta Biomater; 2009 May; 5(4):1223-32. PubMed ID: 19036652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of dense hydroxylapatite or rhenanite containing bioactive glass composites.
    Kangasniemi IM; de Groot K; Becht JG; Yli-Urpo A
    J Biomed Mater Res; 1992 May; 26(5):663-74. PubMed ID: 1324942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formation mechanism of the beta-TCP phase in synthetic fluorohydroxyapatite with different fluorine contents.
    Zhao H; Wang F; Chen X; Wei Z; Yu D; Jiang Z
    Biomed Mater; 2010 Aug; 5(4):045011. PubMed ID: 20644239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate.
    Kim HW; Kong YM; Bae CJ; Noh YJ; Kim HE
    Biomaterials; 2004 Jul; 25(15):2919-26. PubMed ID: 14967523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the microstructure of biocomposites sintered from Ti, HA and bioactive glass.
    Ning CQ; Zhou Y
    Biomaterials; 2004 Aug; 25(17):3379-87. PubMed ID: 15020110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Wet synthesis and characterization of fluoride-substituted hydroxyapatite].
    Zhang Y; Fu T; Xu K; An H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):173-6. PubMed ID: 11450527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics.
    He Z; Ma J; Wang C
    Biomaterials; 2005 May; 26(14):1613-21. PubMed ID: 15576135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical performance and osteoblast-like cell responses of fluorine-substituted hydroxyapatite and zirconia dense composite.
    Kim HW; Knowles JC; Li LH; Kim HE
    J Biomed Mater Res A; 2005 Mar; 72(3):258-68. PubMed ID: 15666364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bonding behavior between two bioactive ceramics in vivo.
    Kitsugi T; Yamamuro T; Nakamura T; Kokubo T; Takagi M; Shibuya T; Takeuchi H; Ono M
    J Biomed Mater Res; 1987 Sep; 21(9):1109-23. PubMed ID: 3667637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity.
    Kim HW; Lee EJ; Kim HE; Salih V; Knowles JC
    Biomaterials; 2005 Jul; 26(21):4395-404. PubMed ID: 15701368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition.
    Hahn BD; Cho YL; Park DS; Choi JJ; Ryu J; Kim JW; Ahn CW; Park C; Kim HE; Kim SG
    J Biomater Appl; 2013 Jan; 27(5):587-94. PubMed ID: 21862512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel akermanite bioceramic: preparation and characteristics.
    Wu C; Chang J
    J Biomater Appl; 2006 Oct; 21(2):119-29. PubMed ID: 16443628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow crack growth behaviour of hydroxyapatite ceramics.
    Benaqqa C; Chevalier J; SaƤdaoui M; Fantozzi G
    Biomaterials; 2005 Nov; 26(31):6106-12. PubMed ID: 15890401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method.
    Suchanek WL; Byrappa K; Shuk P; Riman RE; Janas VF; TenHuisen KS
    Biomaterials; 2004 Aug; 25(19):4647-57. PubMed ID: 15120511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic structure and surface morphology of sintered carbonated apatites.
    Ellies LG; Nelson DG; Featherstone JD
    J Biomed Mater Res; 1988 Jun; 22(6):541-53. PubMed ID: 3410872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Morphological changes of osteogenic cells on hydroxyapatite ceramics sintered at different temperatures].
    Ohoke S; Nakagawa T; Matsuzawa J; Sakakura H
    Ou Daigaku Shigakushi; 1990 Jul; 17(2):101-8. PubMed ID: 2132314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics.
    Bagambisa FB; Joos U; Schilli W
    J Biomed Mater Res; 1993 Aug; 27(8):1047-55. PubMed ID: 8408117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.