These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 15475054)
1. Encapsulation of chondrocytes in injectable alkali-treated collagen gels prepared using poly(ethylene glycol)-based 4-armed star polymer. Taguchi T; Xu L; Kobayashi H; Taniguchi A; Kataoka K; Tanaka J Biomaterials; 2005 Apr; 26(11):1247-52. PubMed ID: 15475054 [TBL] [Abstract][Full Text] [Related]
2. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage. Kang SW; Yoo SP; Kim BS Biomed Mater Eng; 2007; 17(5):269-76. PubMed ID: 17851169 [TBL] [Abstract][Full Text] [Related]
3. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
4. The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Woodfield TB; Miot S; Martin I; van Blitterswijk CA; Riesle J Biomaterials; 2006 Mar; 27(7):1043-53. PubMed ID: 16125219 [TBL] [Abstract][Full Text] [Related]
5. Effects of gel concentration, human fibronectin, and cation supplement on the tissue-engineered cartilage. Kuo YC; Ku IN Biotechnol Prog; 2007; 23(1):238-45. PubMed ID: 17269694 [TBL] [Abstract][Full Text] [Related]
6. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Mercier NR; Costantino HR; Tracy MA; Bonassar LJ Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168 [TBL] [Abstract][Full Text] [Related]
7. Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. Park H; Temenoff JS; Tabata Y; Caplan AI; Raphael RM; Jansen JA; Mikos AG J Biomed Mater Res A; 2009 Mar; 88(4):889-97. PubMed ID: 18381637 [TBL] [Abstract][Full Text] [Related]
8. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Miot S; Woodfield T; Daniels AU; Suetterlin R; Peterschmitt I; Heberer M; van Blitterswijk CA; Riesle J; Martin I Biomaterials; 2005 May; 26(15):2479-89. PubMed ID: 15585250 [TBL] [Abstract][Full Text] [Related]
9. The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Donati I; Stredanska S; Silvestrini G; Vetere A; Marcon P; Marsich E; Mozetic P; Gamini A; Paoletti S; Vittur F Biomaterials; 2005 Mar; 26(9):987-98. PubMed ID: 15369687 [TBL] [Abstract][Full Text] [Related]
10. Photo-iniferter-based thermoresponsive block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) and chondrocyte immobilization. Kwon IK; Matsuda T Biomaterials; 2006 Mar; 27(7):986-95. PubMed ID: 16115679 [TBL] [Abstract][Full Text] [Related]
12. Process design of chondrocyte cultures with monolayer growth for cell expansion and subsequent three-dimensional growth for production of cultured cartilage. Kino-oka M; Maeda Y; Ota Y; Yashiki S; Sugawara K; Yamamoto T; Taya M J Biosci Bioeng; 2005 Jul; 100(1):67-76. PubMed ID: 16233853 [TBL] [Abstract][Full Text] [Related]
13. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292 [TBL] [Abstract][Full Text] [Related]
14. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Galois L; Hutasse S; Cortial D; Rousseau CF; Grossin L; Ronziere MC; Herbage D; Freyria AM Biomaterials; 2006 Jan; 27(1):79-90. PubMed ID: 16026827 [TBL] [Abstract][Full Text] [Related]
15. Tissue engineering strategies for cartilage generation--micromass and three dimensional cultures using human chondrocytes and a continuous cell line. Tare RS; Howard D; Pound JC; Roach HI; Oreffo RO Biochem Biophys Res Commun; 2005 Jul; 333(2):609-21. PubMed ID: 15946652 [TBL] [Abstract][Full Text] [Related]
16. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Martens PJ; Bryant SJ; Anseth KS Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis. Tang S; Spector M Biomed Mater; 2007 Sep; 2(3):S135-41. PubMed ID: 18458458 [TBL] [Abstract][Full Text] [Related]
18. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Montembault A; Tahiri K; Korwin-Zmijowska C; Chevalier X; Corvol MT; Domard A Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850 [TBL] [Abstract][Full Text] [Related]
19. Autologous injectable tissue-engineered cartilage by using platelet-rich plasma: experimental study in a rabbit model. Wu W; Chen F; Liu Y; Ma Q; Mao T J Oral Maxillofac Surg; 2007 Oct; 65(10):1951-7. PubMed ID: 17884521 [TBL] [Abstract][Full Text] [Related]
20. Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Lisignoli G; Cristino S; Piacentini A; Toneguzzi S; Grassi F; Cavallo C; Zini N; Solimando L; Mario Maraldi N; Facchini A Biomaterials; 2005 Oct; 26(28):5677-86. PubMed ID: 15878373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]