BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15475118)

  • 1. Accelerated evolution of the electron transport chain in anthropoid primates.
    Grossman LI; Wildman DE; Schmidt TR; Goodman M
    Trends Genet; 2004 Nov; 20(11):578-85. PubMed ID: 15475118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates.
    Schmidt TR; Wildman DE; Uddin M; Opazo JC; Goodman M; Grossman LI
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6379-84. PubMed ID: 15851671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coadaptive evolution in cytochrome c oxidase: 9 of 13 subunits show accelerated rates of nonsynonymous substitution in anthropoid primates.
    Doan JW; Schmidt TR; Wildman DE; Uddin M; Goldberg A; Hüttemann M; Goodman M; Weiss ML; Grossman LI
    Mol Phylogenet Evol; 2004 Dec; 33(3):944-50. PubMed ID: 15522815
    [No Abstract]   [Full Text] [Related]  

  • 4. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes?
    Wu W; Schmidt TR; Goodman M; Grossman LI
    Mol Phylogenet Evol; 2000 Nov; 17(2):294-304. PubMed ID: 11083942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of aerobic energy metabolism in primates.
    Grossman LI; Schmidt TR; Wildman DE; Goodman M
    Mol Phylogenet Evol; 2001 Jan; 18(1):26-36. PubMed ID: 11161739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of interacting proteins in the mitochondrial electron transport system in a marine copepod.
    Willett CS; Burton RS
    Mol Biol Evol; 2004 Mar; 21(3):443-53. PubMed ID: 14660687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.
    Osada N; Akashi H
    Mol Biol Evol; 2012 Jan; 29(1):337-46. PubMed ID: 21890478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Adaptive evolution of the Homo mitochondrial genome].
    Maliarchuk BA
    Mol Biol (Mosk); 2011; 45(5):845-50. PubMed ID: 22393781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates.
    Uddin M; Opazo JC; Wildman DE; Sherwood CC; Hof PR; Goodman M; Grossman LI
    BMC Evol Biol; 2008 Jan; 8():8. PubMed ID: 18197981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive evolution of cytochrome c oxidase subunit VIII in anthropoid primates.
    Goldberg A; Wildman DE; Schmidt TR; Huttemann M; Goodman M; Weiss ML; Grossman LI
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5873-8. PubMed ID: 12716970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights.
    Gawryluk RM; Chisholm KA; Pinto DM; Gray MW
    Biochim Biophys Acta; 2012 Nov; 1817(11):2027-37. PubMed ID: 22709906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates.
    Wu W; Goodman M; Lomax MI; Grossman LI
    J Mol Evol; 1997 May; 44(5):477-91. PubMed ID: 9115172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid nonsynonymous evolution of the iron-sulfur protein in anthropoid primates.
    Doan JW; Schmidt TR; Wildman DE; Goodman M; Weiss ML; Grossman LI
    J Bioenerg Biomembr; 2005 Feb; 37(1):35-41. PubMed ID: 15906147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates.
    Montgomery SH; Capellini I; Venditti C; Barton RA; Mundy NI
    Mol Biol Evol; 2011 Jan; 28(1):625-38. PubMed ID: 20961963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional respiratory chain analyses in murid xenomitochondrial cybrids expose coevolutionary constraints of cytochrome b and nuclear subunits of complex III.
    McKenzie M; Chiotis M; Pinkert CA; Trounce IA
    Mol Biol Evol; 2003 Jul; 20(7):1117-24. PubMed ID: 12777531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subchronic exposure to arsenic decreased Sdha expression in the brain of mice.
    Hong Y; Piao F; Zhao Y; Li S; Wang Y; Liu P
    Neurotoxicology; 2009 Jul; 30(4):538-43. PubMed ID: 19422848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in respiratory chain complexes and human diseases.
    Borisov VB
    Ital J Biochem; 2004 Mar; 53(1):34-40. PubMed ID: 15356960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of microcephalin, a gene determining human brain size.
    Wang YQ; Su B
    Hum Mol Genet; 2004 Jun; 13(11):1131-7. PubMed ID: 15056608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sexual size dimorphism predicts rates of sequence evolution of SPerm Adhesion Molecule 1 (SPAM1, also PH-20) in monkeys, but not in hominoids (apes including humans).
    Prothmann A; Laube I; Dietz J; Roos C; Mengel K; Zischler H; Herlyn H
    Mol Phylogenet Evol; 2012 Apr; 63(1):52-63. PubMed ID: 22197807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Search for genes positively selected during primate evolution by 5'-end-sequence screening of cynomolgus monkey cDNAs.
    Osada N; Kusuda J; Hirata M; Tanuma R; Hida M; Sugano S; Hirai M; Hashimoto K
    Genomics; 2002 May; 79(5):657-62. PubMed ID: 11991714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.