BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15475163)

  • 1. Lateral gene transfer and the complex distribution of insertions in eukaryotic enolase.
    Harper JT; Keeling PJ
    Gene; 2004 Oct; 340(2):227-35. PubMed ID: 15475163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase.
    Keeling PJ; Palmer JD
    Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10745-50. PubMed ID: 11526220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transcriptional fusion of genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase in dinoflagellates.
    Takishita K; Patron NJ; Ishida K; Maruyama T; Keeling PJ
    J Eukaryot Microbiol; 2005; 52(4):343-8. PubMed ID: 16014012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new divergent type of eukaryotic methionine adenosyltransferase is present in multiple distantly related secondary algal lineages.
    Sanchez-Perez GF; Hampl V; Simpson AG; Roger AJ
    J Eukaryot Microbiol; 2008; 55(5):374-81. PubMed ID: 19017057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss.
    Malik SB; Ramesh MA; Hulstrand AM; Logsdon JM
    Mol Biol Evol; 2007 Dec; 24(12):2827-41. PubMed ID: 17921483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EFL GTPase in cryptomonads and the distribution of EFL and EF-1alpha in chromalveolates.
    Gile GH; Patron NJ; Keeling PJ
    Protist; 2006 Oct; 157(4):435-44. PubMed ID: 16904374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphic insertions and deletions in parabasalian enolase genes.
    Keeling PJ
    J Mol Evol; 2004 May; 58(5):550-6. PubMed ID: 15170258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates.
    Hackett JD; Yoon HS; Li S; Reyes-Prieto A; Rümmele SE; Bhattacharya D
    Mol Biol Evol; 2007 Aug; 24(8):1702-13. PubMed ID: 17488740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of bacterial gene movement.
    Hao W; Golding GB
    Mol Biol Evol; 2004 Jul; 21(7):1294-307. PubMed ID: 15115802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontal gene transfer and archaeal origin of deoxyhypusine synthase homologous genes in bacteria.
    Brochier C; López-García P; Moreira D
    Gene; 2004 Apr; 330():169-76. PubMed ID: 15087136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.
    Frickey T; Kannenberg E
    Environ Microbiol; 2009 May; 11(5):1224-41. PubMed ID: 19207562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic.
    Huang J; Xu Y; Gogarten JP
    Mol Biol Evol; 2005 Nov; 22(11):2142-6. PubMed ID: 16049196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny, sequence conservation, and functional complementation of the SBDS protein family.
    Boocock GR; Marit MR; Rommens JM
    Genomics; 2006 Jun; 87(6):758-71. PubMed ID: 16529906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm.
    Podell S; Gaasterland T; Allen EE
    BMC Bioinformatics; 2008 Oct; 9():419. PubMed ID: 18840280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota.
    Klotz MG; Loewen PC
    Mol Biol Evol; 2003 Jul; 20(7):1098-112. PubMed ID: 12777528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rooting the eukaryote tree by using a derived gene fusion.
    Stechmann A; Cavalier-Smith T
    Science; 2002 Jul; 297(5578):89-91. PubMed ID: 12098695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of structure and function in the o-succinylbenzoate synthase/N-acylamino acid racemase family of the enolase superfamily.
    Glasner ME; Fayazmanesh N; Chiang RA; Sakai A; Jacobson MP; Gerlt JA; Babbitt PC
    J Mol Biol; 2006 Jun; 360(1):228-50. PubMed ID: 16740275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eukaryotic origin of glyceraldehyde-3-phosphate dehydrogenase genes in Clostridium thermocellum and Clostridium cellulolyticum genomes and putative fates of the exogenous gene in the subsequent genome evolution.
    Takishita K; Inagaki Y
    Gene; 2009 Jul; 441(1-2):22-7. PubMed ID: 18420358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal gene transfer in eukaryotic evolution.
    Keeling PJ; Palmer JD
    Nat Rev Genet; 2008 Aug; 9(8):605-18. PubMed ID: 18591983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanded phylogenies of canonical and non-canonical types of methionine adenosyltransferase reveal a complex history of these gene families in eukaryotes.
    Kamikawa R; Sanchez-Perez GF; Sako Y; Roger AJ; Inagaki Y
    Mol Phylogenet Evol; 2009 Nov; 53(2):565-70. PubMed ID: 19577655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.