BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 15475175)

  • 21. Comparison of free radical generation by pre- and post-sintered cemented carbide particles.
    Stefaniak AB; Harvey CJ; Bukowski VC; Leonard SS
    J Occup Environ Hyg; 2010 Jan; 7(1):23-34. PubMed ID: 19904657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study of the acute lung toxicity of pure cobalt powder and cobalt-tungsten carbide mixture in rat.
    Lasfargues G; Lison D; Maldague P; Lauwerys R
    Toxicol Appl Pharmacol; 1992 Jan; 112(1):41-50. PubMed ID: 1733047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.
    Moche H; Chevalier D; Barois N; Lorge E; Claude N; Nesslany F
    Toxicol Sci; 2014 Jan; 137(1):125-34. PubMed ID: 24085191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro.
    Armstead AL; Arena CB; Li B
    Toxicol Appl Pharmacol; 2014 Jul; 278(1):1-8. PubMed ID: 24746988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro toxicity of cobalt and hard metal dust in rat and human type II pneumocytes.
    Roesems G; Hoet PH; Demedts M; Nemery B
    Pharmacol Toxicol; 1997 Aug; 81(2):74-80. PubMed ID: 9298503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of the mechanism responsible for the elective toxicity of tungsten carbide-cobalt powder toward macrophages.
    Lison D; Lauwerys R
    Toxicol Lett; 1992 Apr; 60(2):203-10. PubMed ID: 1570634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro cytotoxicity of various forms of cobalt for rat alveolar macrophages and type II pneumocytes.
    Roesems G; Hoet PH; Dinsdale D; Demedts M; Nemery B
    Toxicol Appl Pharmacol; 2000 Jan; 162(1):2-9. PubMed ID: 10631122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genotoxicity of tungsten carbide-cobalt (WC-Co) nanoparticles in vitro: mechanisms-of-action studies.
    Moche H; Chevalier D; Vezin H; Claude N; Lorge E; Nesslany F
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Feb; 779():15-22. PubMed ID: 25813722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlorpyrifos induces apoptosis in human monocyte cell line U937.
    Nakadai A; Li Q; Kawada T
    Toxicology; 2006 Jul; 224(3):202-9. PubMed ID: 16787693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro.
    Colognato R; Bonelli A; Ponti J; Farina M; Bergamaschi E; Sabbioni E; Migliore L
    Mutagenesis; 2008 Sep; 23(5):377-82. PubMed ID: 18504271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cobalt bioavailability from hard metal particles. Further evidence that cobalt alone is not responsible for the toxicity of hard metal particles.
    Lison D; Lauwerys R
    Arch Toxicol; 1994; 68(8):528-31. PubMed ID: 7802596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased levels of apoptosis of leukocyte subsets in cultured PBMCs compared to whole blood as shown by Annexin V binding: relevance to cytokine production.
    Hodge G; Hodge S; Han P
    Cytokine; 2000 Dec; 12(12):1763-8. PubMed ID: 11097745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human cell line-dependent WC-Co nanoparticle cytotoxicity and genotoxicity: a key role of ROS production.
    Paget V; Moche H; Kortulewski T; Grall R; Irbah L; Nesslany F; Chevillard S
    Toxicol Sci; 2015 Feb; 143(2):385-97. PubMed ID: 25398624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physicochemical mechanism of the interaction between cobalt metal and carbide particles to generate toxic activated oxygen species.
    Lison D; Carbonnelle P; Mollo L; Lauwerys R; Fubini B
    Chem Res Toxicol; 1995 Jun; 8(4):600-6. PubMed ID: 7548741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Psychosine-induced apoptosis and cytokine activation in immune peripheral cells of Krabbe patients.
    Formichi P; Radi E; Battisti C; Pasqui A; Pompella G; Lazzerini PE; Laghi-Pasini F; Leonini A; Di Stefano A; Federico A
    J Cell Physiol; 2007 Sep; 212(3):737-43. PubMed ID: 17458901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental contamination by cobalt in the vicinity of a cemented tungsten carbide tool grinding plant.
    Abraham JL; Hunt A
    Environ Res; 1995 Apr; 69(1):67-74. PubMed ID: 7588496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tungsten Carbide-Cobalt Nanoparticles Induce Reactive Oxygen Species, AKT, ERK, AP-1, NF-κB, VEGF, and Angiogenesis.
    Liu LZ; Ding M; Zheng JZ; Zhu Y; Fenderson BA; Li B; Yu JJ; Jiang BH
    Biol Trace Elem Res; 2015 Jul; 166(1):57-65. PubMed ID: 25893364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide.
    Baskić D; Popović S; Ristić P; Arsenijević NN
    Cell Biol Int; 2006 Nov; 30(11):924-32. PubMed ID: 16895761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes.
    Busch W; Kühnel D; Schirmer K; Scholz S
    BMC Genomics; 2010 Jan; 11():65. PubMed ID: 20105288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigallocatechin gallate induces apoptosis of monocytes.
    Kawai K; Tsuno NH; Kitayama J; Okaji Y; Yazawa K; Asakage M; Sasaki S; Watanabe T; Takahashi K; Nagawa H
    J Allergy Clin Immunol; 2005 Jan; 115(1):186-91. PubMed ID: 15637567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.