These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15475590)

  • 1. Kinetics of intracellular ice formation in one-dimensional arrays of interacting biological cells.
    Irimia D; Karlsson JO
    Biophys J; 2005 Jan; 88(1):647-60. PubMed ID: 15475590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and mechanism of intercellular ice propagation in a micropatterned tissue construct.
    Irimia D; Karlsson JO
    Biophys J; 2002 Apr; 82(4):1858-68. PubMed ID: 11916845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric analysis of intercellular ice propagation during cryosurgery, simulated using monte carlo techniques.
    Stott SL; Irimia D; Karlsson JO
    Technol Cancer Res Treat; 2004 Apr; 3(2):113-23. PubMed ID: 15059017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of intercellular junction protein expression on intracellular ice formation in mouse insulinoma cells.
    Higgins AZ; Karlsson JO
    Biophys J; 2013 Nov; 105(9):2006-15. PubMed ID: 24209845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryopreservation of germinal vesicle stage porcine oocytes based on intracellular ice formation assessment.
    Yang CY; Chen MC; Lee PT; Lin TT
    Cryo Letters; 2012; 33(5):349-62. PubMed ID: 23224368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions.
    Mori S; Choi J; Devireddy RV; Bischof JC
    Cryobiology; 2012 Dec; 65(3):242-55. PubMed ID: 22863747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryomicroscopic analysis of intracellular ice formation in porcine iliac endothelial cells upon cooling.
    Li Y; Panhwa F; Chen Z; Yuan F; Ji X; Hu P; Zhao G
    Cryo Letters; 2017; 38(4):315-320. PubMed ID: 29734433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular ice formation during the freezing of hepatocytes cultured in a double collagen gel.
    Hubel A; Toner M; Cravalho EG; Yarmush ML; Tompkins RG
    Biotechnol Prog; 1991; 7(6):554-9. PubMed ID: 1367755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransport phenomena in freezing mammalian oocytes.
    Yang G; Veres M; Szalai G; Zhang A; Xu LX; He X
    Ann Biomed Eng; 2011 Jan; 39(1):580-91. PubMed ID: 20848315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extra- and intra-cellular ice formation of red seabream (Pagrus major) embryos at different cooling rates.
    Li J; Zhang LL; Liu QH; Xu XZ; Xiao ZZ; Ma DY; Xu SH; Xue QZ
    Cryobiology; 2009 Aug; 59(1):48-53. PubMed ID: 19375414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of intracellular ice formation using high-speed video cryomicroscopy.
    Stott SL; Karlsson JOM
    Cryobiology; 2009 Feb; 58(1):84-95. PubMed ID: 19041300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium freezing of one-cell mouse embryos. Membrane integrity and developmental potential.
    Toner M; Cravalho EG; Stachecki J; Fitzgerald T; Tompkins RG; Yarmush ML; Armant DR
    Biophys J; 1993 Jun; 64(6):1908-21. PubMed ID: 8369414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extra- and intracellular ice formation in mouse oocytes.
    Mazur P; Seki S; Pinn IL; Kleinhans FW; Edashige K
    Cryobiology; 2005 Aug; 51(1):29-53. PubMed ID: 15975568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-induced shrinkage of individual cells and cell-to-cell propagation of intracellular ice in cell chains from salivary glands.
    Berger WK; Uhrík B
    Experientia; 1996 Sep; 52(9):843-50. PubMed ID: 8841511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryomicroscopic analysis of intracellular ice formation during freezing of mouse oocytes without cryoadditives.
    Toner M; Cravalho EG; Karel M; Armant DR
    Cryobiology; 1991 Feb; 28(1):55-71. PubMed ID: 2015761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells.
    Freimark D; Sehl C; Weber C; Hudel K; Czermak P; Hofmann N; Spindler R; Glasmacher B
    Cryobiology; 2011 Oct; 63(2):67-75. PubMed ID: 21620818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of gray-level variation detection method to intracellular ice formation.
    Wang Y; Zhu K; Zhang X; Ji H
    Cryobiology; 2018 Apr; 81():81-87. PubMed ID: 29448018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of a kinetic model for intracellular ice formation based on the extent of supercooling.
    Pitt RE; Chandrasekaran M; Parks JE
    Cryobiology; 1992 Jun; 29(3):359-73. PubMed ID: 1499321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera.
    Ninagawa T; Eguchi A; Kawamura Y; Konishi T; Narumi A
    Cryobiology; 2016 Aug; 73(1):20-9. PubMed ID: 27343136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of freezing effects on human microvascular-endothelial cells (HMEC).
    Berrada MS; Bischof JC
    Cryo Letters; 2001; 22(6):353-66. PubMed ID: 11788877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.