BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

758 related articles for article (PubMed ID: 15476389)

  • 1. Preventing misfolding of the prion protein by trimethylamine N-oxide.
    Bennion BJ; DeMarco ML; Daggett V
    Biochemistry; 2004 Oct; 43(41):12955-63. PubMed ID: 15476389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical chaperones interfere with the formation of scrapie prion protein.
    Tatzelt J; Prusiner SB; Welch WJ
    EMBO J; 1996 Dec; 15(23):6363-73. PubMed ID: 8978663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PrP N-terminal domain triggers PrP(Sc)-like aggregation of Dpl.
    Erlich P; Cesbron JY; Lemaire-Vieille C; Curt A; Andrieu JP; Schoehn G; Jamin M; Gagnon J
    Biochem Biophys Res Commun; 2008 Jan; 365(3):478-83. PubMed ID: 17997980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular model of an alpha-helical prion protein dimer and its monomeric subunits as derived from chemical cross-linking and molecular modeling calculations.
    Kaimann T; Metzger S; Kuhlmann K; Brandt B; Birkmann E; Höltje HD; Riesner D
    J Mol Biol; 2008 Feb; 376(2):582-96. PubMed ID: 18158160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of the osmolyte trimethylamine N-oxide on the stability of the prion protein at low pH.
    Granata V; Palladino P; Tizzano B; Negro A; Berisio R; Zagari A
    Biopolymers; 2006 Jun; 82(3):234-40. PubMed ID: 16489585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism for low pH triggered misfolding of the human prion protein.
    DeMarco ML; Daggett V
    Biochemistry; 2007 Mar; 46(11):3045-54. PubMed ID: 17315950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of biomolecules: Characterization of the early steps in the pH-induced conformational conversion of the hamster, bovine and human forms of the prion protein.
    Alonso DO; An C; Daggett V
    Philos Trans A Math Phys Eng Sci; 2002 Jun; 360(1795):1165-78. PubMed ID: 12804272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of natural and recombinant prion protein into fibrils.
    Leffers KW; Wille H; Stöhr J; Junger E; Prusiner SB; Riesner D
    Biol Chem; 2005 Jun; 386(6):569-80. PubMed ID: 16006244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the propensities of helices in PrP(C) to form beta sheet using NMR structures and sequence alignments.
    Dima RI; Thirumalai D
    Biophys J; 2002 Sep; 83(3):1268-80. PubMed ID: 12202354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction analysis of scrapie prion: intermediate and folded structures in a peptide containing two putative alpha-helices.
    Inouye H; Kirschner DA
    J Mol Biol; 1997 May; 268(2):375-89. PubMed ID: 9159477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The determinants of stability in the human prion protein: insights into folding and misfolding from the analysis of the change in the stabilization energy distribution in different conditions.
    Colacino S; Tiana G; Broglia RA; Colombo G
    Proteins; 2006 Mar; 62(3):698-707. PubMed ID: 16432880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PrP(Sc) of scrapie 263K propagates efficiently in spleen and muscle tissues with protein misfolding cyclic amplification.
    Shi S; Dong CF; Wang GR; Wang X; An R; Chen JM; Shan B; Zhang BY; Xu K; Shi Q; Tian C; Gao C; Han J; Dong XP
    Virus Res; 2009 Apr; 141(1):26-33. PubMed ID: 19162101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling a prion protein dimer: predictions for fibril formation.
    Warwicker J
    Biochem Biophys Res Commun; 2000 Nov; 278(3):646-52. PubMed ID: 11095963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring prion protein stability by NMR.
    Julien O; Graether SP; Sykes BD
    J Toxicol Environ Health A; 2009; 72(17-18):1069-74. PubMed ID: 19697241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The emerging principles of mammalian prion propagation and transmissibility barriers: Insight from studies in vitro.
    Surewicz WK; Jones EM; Apetri AC
    Acc Chem Res; 2006 Sep; 39(9):654-62. PubMed ID: 16981682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into the interaction between prion protein and nucleic acid.
    Lima LM; Cordeiro Y; Tinoco LW; Marques AF; Oliveira CL; Sampath S; Kodali R; Choi G; Foguel D; Torriani I; Caughey B; Silva JL
    Biochemistry; 2006 Aug; 45(30):9180-7. PubMed ID: 16866364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper induces increased beta-sheet content in the scrapie-susceptible ovine prion protein PrPVRQ compared with the resistant allelic variant PrPARR.
    Wong E; Thackray AM; Bujdoso R
    Biochem J; 2004 May; 380(Pt 1):273-82. PubMed ID: 14969585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion-protein-specific aptamer reduces PrPSc formation.
    Proske D; Gilch S; Wopfner F; Schätzl HM; Winnacker EL; Famulok M
    Chembiochem; 2002 Aug; 3(8):717-25. PubMed ID: 12203970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro conversion and seeded fibrillization of posttranslationally modified prion protein.
    Stöhr J; Elfrink K; Weinmann N; Wille H; Willbold D; Birkmann E; Riesner D
    Biol Chem; 2011 May; 392(5):415-21. PubMed ID: 21476870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous conformational change within the prion protein--implications for disease pathogenesis?
    Jackson GS
    Bioessays; 2001 Sep; 23(9):772-4. PubMed ID: 11536289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.