BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 15476399)

  • 1. Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro.
    Sun W; Li G; Nicholson AW
    Biochemistry; 2004 Oct; 43(41):13054-62. PubMed ID: 15476399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant.
    Sun W; Nicholson AW
    Biochemistry; 2001 Apr; 40(16):5102-10. PubMed ID: 11305928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single processing center models for human Dicer and bacterial RNase III.
    Zhang H; Kolb FA; Jaskiewicz L; Westhof E; Filipowicz W
    Cell; 2004 Jul; 118(1):57-68. PubMed ID: 15242644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncatalytic assembly of ribonuclease III with double-stranded RNA.
    Blaszczyk J; Gan J; Tropea JE; Court DL; Waugh DS; Ji X
    Structure; 2004 Mar; 12(3):457-66. PubMed ID: 15016361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing.
    Zuo Y; Wang Y; Malhotra A
    Structure; 2005 Jul; 13(7):973-84. PubMed ID: 16004870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication.
    Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA
    J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of three aspartic acid residues essential for catalysis by the RusA holliday junction resolvase.
    Bolt EL; Sharples GJ; Lloyd RG
    J Mol Biol; 1999 Feb; 286(2):403-15. PubMed ID: 9973560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus.
    Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quaternary structure and catalytic activity of the Escherichia coli ribonuclease E amino-terminal catalytic domain.
    Callaghan AJ; Grossmann JG; Redko YU; Ilag LL; Moncrieffe MC; Symmons MF; Robinson CV; McDowall KJ; Luisi BF
    Biochemistry; 2003 Dec; 42(47):13848-55. PubMed ID: 14636052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New approaches to understanding double-stranded RNA processing by ribonuclease III purification and assays of homodimeric and heterodimeric forms of RNase III from bacterial extremophiles and mesophiles.
    Meng W; Nicholson RH; Nathania L; Pertzev AV; Nicholson AW
    Methods Enzymol; 2008; 447():119-29. PubMed ID: 19161841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Zn-link": a metal-sharing interface that organizes the quaternary structure and catalytic site of the endoribonuclease, RNase E.
    Callaghan AJ; Redko Y; Murphy LM; Grossmann JG; Yates D; Garman E; Ilag LL; Robinson CV; Symmons MF; McDowall KJ; Luisi BF
    Biochemistry; 2005 Mar; 44(12):4667-75. PubMed ID: 15779893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of the RNase III gene of rock bream iridovirus.
    Zenke K; Kim KH
    Arch Virol; 2008; 153(9):1651-6. PubMed ID: 18641914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermediate states of ribonuclease III in complex with double-stranded RNA.
    Gan J; Tropea JE; Austin BP; Court DL; Waugh DS; Ji X
    Structure; 2005 Oct; 13(10):1435-42. PubMed ID: 16216575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition.
    Sam M; Henras AK; Chanfreau G
    Biochemistry; 2005 Mar; 44(11):4181-7. PubMed ID: 15766245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain.
    Sun W; Jun E; Nicholson AW
    Biochemistry; 2001 Dec; 40(49):14976-84. PubMed ID: 11732918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of RNase HII substrate recognition using RNase HII-argonaute chimaeric enzymes from Pyrococcus furiosus.
    Kitamura S; Fujishima K; Sato A; Tsuchiya D; Tomita M; Kanai A
    Biochem J; 2010 Feb; 426(3):337-44. PubMed ID: 20047562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular requirements for duplex recognition and cleavage by eukaryotic RNase III: discovery of an RNA-dependent DNA cleavage activity of yeast Rnt1p.
    Lamontagne B; Hannoush RN; Damha MJ; Abou Elela S
    J Mol Biol; 2004 Apr; 338(2):401-18. PubMed ID: 15066440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.