BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15476402)

  • 1. Normal-mode analysis suggests protein flexibility modulation throughout RNA polymerase's functional cycle.
    Van Wynsberghe A; Li G; Cui Q
    Biochemistry; 2004 Oct; 43(41):13083-96. PubMed ID: 15476402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution.
    Vassylyev DG; Sekine S; Laptenko O; Lee J; Vassylyeva MN; Borukhov S; Yokoyama S
    Nature; 2002 Jun; 417(6890):712-9. PubMed ID: 12000971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase beta' subunit.
    Chlenov M; Masuda S; Murakami KS; Nikiforov V; Darst SA; Mustaev A
    J Mol Biol; 2005 Oct; 353(1):138-54. PubMed ID: 16154587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homology modelling of RNA polymerase and associated transcription factors from Bacillus subtilis.
    MacDougall IJ; Lewis PJ; Griffith R
    J Mol Graph Model; 2005 Jan; 23(4):297-303. PubMed ID: 15670950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution.
    Murakami KS; Masuda S; Darst SA
    Science; 2002 May; 296(5571):1280-4. PubMed ID: 12016306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant Thermus aquaticus RNA polymerase for structural studies.
    Kuznedelov K; Lamour V; Patikoglou G; Chlenov M; Darst SA; Severinov K
    J Mol Biol; 2006 May; 359(1):110-21. PubMed ID: 16618493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal machinery of RNA polymerase holoenzyme sufficient for promoter melting.
    Young BA; Gruber TM; Gross CA
    Science; 2004 Feb; 303(5662):1382-4. PubMed ID: 14988563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography.
    Darst SA; Kubalek EW; Kornberg RD
    Nature; 1989 Aug; 340(6236):730-2. PubMed ID: 2671751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of Thermus aquaticus Gfh1, a Gre-factor paralog that inhibits rather than stimulates transcript cleavage.
    Lamour V; Hogan BP; Erie DA; Darst SA
    J Mol Biol; 2006 Feb; 356(1):179-88. PubMed ID: 16337964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of transcription activation.
    Feng Y; Zhang Y; Ebright RH
    Science; 2016 Jun; 352(6291):1330-3. PubMed ID: 27284196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification, crystallization and initial crystallographic analysis of RNA polymerase holoenzyme from Thermus thermophilus.
    Vassylyeva MN; Lee J; Sekine SI; Laptenko O; Kuramitsu S; Shibata T; Inoue Y; Borukhov S; Vassylyev DG; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2002 Sep; 58(Pt 9):1497-500. PubMed ID: 12198314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for transcription elongation by bacterial RNA polymerase.
    Vassylyev DG; Vassylyeva MN; Perederina A; Tahirov TH; Artsimovitch I
    Nature; 2007 Jul; 448(7150):157-62. PubMed ID: 17581590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional identification of an anti-sigmaE factor from Thermus thermophilus HB8.
    Sakamoto K; Agari Y; Yokoyama S; Kuramitsu S; Shinkai A
    Gene; 2008 Nov; 423(2):153-9. PubMed ID: 18682280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective motions of RNA polymerases. Analysis of core enzyme, elongation complex and holoenzyme.
    Yildirim Y; Doruker P
    J Biomol Struct Dyn; 2004 Dec; 22(3):267-80. PubMed ID: 15473702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins.
    Artsimovitch I; Vassylyeva MN; Svetlov D; Svetlov V; Perederina A; Igarashi N; Matsugaki N; Wakatsuki S; Tahirov TH; Vassylyev DG
    Cell; 2005 Aug; 122(3):351-63. PubMed ID: 16096056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolving story of the omega subunit of bacterial RNA polymerase.
    Mathew R; Chatterji D
    Trends Microbiol; 2006 Oct; 14(10):450-5. PubMed ID: 16908155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between the beta' clamp and the beta' jaw domains during DNA opening by the bacterial RNA polymerase at sigma54-dependent promoters.
    Wigneshweraraj SR; Savalia D; Severinov K; Buck M
    J Mol Biol; 2006 Jun; 359(5):1182-95. PubMed ID: 16725156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the central and C-terminal domain of the sigma(54)-activator ZraR.
    Sallai L; Tucker PA
    J Struct Biol; 2005 Aug; 151(2):160-70. PubMed ID: 16005641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme.
    Murakami KS
    J Biol Chem; 2013 Mar; 288(13):9126-34. PubMed ID: 23389035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function relationship of inhibitory Smads: Structural flexibility contributes to functional divergence.
    Hariharan R; Pillai MR
    Proteins; 2008 Jun; 71(4):1853-62. PubMed ID: 18175316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.