BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15476408)

  • 1. Functional evaluation of heme vinyl groups in myoglobin with symmetric protoheme isomers.
    Mie Y; Yamada C; Hareau GP; Neya S; Uno T; Funasaki N; Nishiyama K; Taniguchi I
    Biochemistry; 2004 Oct; 43(41):13149-55. PubMed ID: 15476408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome.
    Kalsbeck WA; Robertson DE; Pandey RK; Smith KM; Dutton PL; Bocian DF
    Biochemistry; 1996 Mar; 35(11):3429-38. PubMed ID: 8639493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and electrochemical studies of horse myoglobin in dimethyl sulfoxide.
    Li QC; Mabrouk PA
    J Biol Inorg Chem; 2003 Jan; 8(1-2):83-94. PubMed ID: 12459902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the vinyl-globin interactions on the temperature-dependent broadening of the Soret spectra: a study with horse myoglobin and Scapharca dimeric hemoglobin reconstituted with unnatural 2,4-heme derivatives.
    Boffi A; Zamparelli C; Verzili D; Ilari A; Chiancone E
    Arch Biochem Biophys; 1997 Apr; 340(1):43-51. PubMed ID: 9126275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of systematic peripheral group deuteration on the low-frequency resonance Raman spectra of myoglobin derivatives.
    Mak PJ; Podstawka E; Kincaid JR; Proniewicz LM
    Biopolymers; 2004 Oct; 75(3):217-28. PubMed ID: 15378481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of altered protein-heme interactions on the resonance Raman spectra of heme proteins. Studies of heme rotational disorder.
    Rwere F; Mak PJ; Kincaid JR
    Biopolymers; 2008 Mar; 89(3):179-86. PubMed ID: 18008322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer in tetrahemic cytochromes c3: spectroelectrochemical evidence for a conformational change triggered by heme IV reduction.
    Kazanskaya I; Lexa D; Bruschi M; Chottard G
    Biochemistry; 1996 Oct; 35(41):13411-8. PubMed ID: 8873609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme symmetry, vibronic structure, and dynamics in heme proteins: ferrous nicotinate horse myoglobin and soybean leghemoglobin.
    Sanfratello V; Boffi A; Cupane A; Leone M
    Biopolymers; 2000; 57(5):291-305. PubMed ID: 10958321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular dichroism of hemoglobin and myoglobin.
    Nagai M; Nagai Y; Imai K; Neya S
    Chirality; 2014 Sep; 26(9):438-42. PubMed ID: 24425582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low frequency resonance Raman spectra of isolated alpha and beta subunits of hemoglobin and their deuterated analogues.
    Podstawka E; Mak PJ; Kincaid JR; Proniewicz LM
    Biopolymers; 2006 Dec; 83(5):455-66. PubMed ID: 16845667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand binding properties of myoglobin reconstituted with iron porphycene: unusual O2 binding selectivity against CO binding.
    Matsuo T; Dejima H; Hirota S; Murata D; Sato H; Ikegami T; Hori H; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2004 Dec; 126(49):16007-17. PubMed ID: 15584735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic characterization and electrochemistry of poly(ethylene oxide)-modified myoglobin in organic solvents.
    Wiwatchaiwong S; Nakamura N; Ohno H
    Biotechnol Prog; 2006; 22(5):1276-81. PubMed ID: 17022664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional roles of heme binding module in globin proteins: identification of the segment regulating the heme binding structure.
    Inaba K; Ishimori K; Morishima I
    J Mol Biol; 1998; 283(1):311-27. PubMed ID: 9761693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases.
    Zhao X; Nilges MJ; Lu Y
    Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of heme types in heme-copper oxidases: effects of replacing a heme b with a heme o mimic in an engineered heme-copper center in myoglobin.
    Wang N; Zhao X; Lu Y
    J Am Chem Soc; 2005 Nov; 127(47):16541-7. PubMed ID: 16305243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the anomalous heme pocket of rainbow trout myoglobin.
    Howes BD; Helbo S; Fago A; Smulevich G
    J Inorg Biochem; 2012 Apr; 109():1-8. PubMed ID: 22366232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of propionate side chains of the heme in circular dichroism of myoglobin: experimental and theoretical analyses.
    Nagai M; Kobayashi C; Nagai Y; Imai K; Mizusawa N; Sakurai H; Neya S; Kayanuma M; Shoji M; Nagatomo S
    J Phys Chem B; 2015 Jan; 119(4):1275-87. PubMed ID: 25525834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox properties of engineered ruthenium myoglobin.
    Li CZ; Taniguchi I; Mulchandani A
    Bioelectrochemistry; 2009 Jun; 75(2):182-8. PubMed ID: 19427819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and ligand binding properties of myoglobins reconstituted with monodepropionated heme: functional role of each heme propionate side chain.
    Harada K; Makino M; Sugimoto H; Hirota S; Matsuo T; Shiro Y; Hisaeda Y; Hayashi T
    Biochemistry; 2007 Aug; 46(33):9406-16. PubMed ID: 17636874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.