These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 15476669)

  • 1. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors.
    Gao ZG; Mamedova LK; Chen P; Jacobson KA
    Biochem Pharmacol; 2004 Nov; 68(10):1985-93. PubMed ID: 15476669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N6-Substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors.
    Gao ZG; Blaustein JB; Gross AS; Melman N; Jacobson KA
    Biochem Pharmacol; 2003 May; 65(10):1675-84. PubMed ID: 12754103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N(6)-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A(3) receptor and a starting point for searching A(2B) ligands.
    Volpini R; Costanzi S; Lambertucci C; Taffi S; Vittori S; Klotz KN; Cristalli G
    J Med Chem; 2002 Jul; 45(15):3271-9. PubMed ID: 12109910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists.
    Baraldi PG; Tabrizi MA; Preti D; Bovero A; Romagnoli R; Fruttarolo F; Zaid NA; Moorman AR; Varani K; Gessi S; Merighi S; Borea PA
    J Med Chem; 2004 Mar; 47(6):1434-47. PubMed ID: 14998332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors.
    Alnouri MW; Jepards S; Casari A; Schiedel AC; Hinz S; Müller CE
    Purinergic Signal; 2015 Sep; 11(3):389-407. PubMed ID: 26126429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,3-dialkyl-8-N-substituted benzyloxycarbonylamino-9-deazaxanthines as potent adenosine receptor ligands: Design, synthesis, structure-affinity and structure-selectivity relationships.
    Fernández F; Caamaño O; Isabel Nieto M; López C; García-Mera X; Stefanachi A; Nicolotti O; Isabel Loza M; Brea J; Esteve C; Segarra V; Vidal B; Carotti A
    Bioorg Med Chem; 2009 May; 17(10):3618-29. PubMed ID: 19398343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural determinants of efficacy at A3 adenosine receptors: modification of the ribose moiety.
    Gao ZG; Jeong LS; Moon HR; Kim HO; Choi WJ; Shin DH; Elhalem E; Comin MJ; Melman N; Mamedova L; Gross AS; Rodriguez JB; Jacobson KA
    Biochem Pharmacol; 2004 Mar; 67(5):893-901. PubMed ID: 15104242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative pharmacology of human adenosine receptor subtypes - characterization of stably transfected receptors in CHO cells.
    Klotz KN; Hessling J; Hegler J; Owman C; Kull B; Fredholm BB; Lohse MJ
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Jan; 357(1):1-9. PubMed ID: 9459566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1,8-disubstituted xanthine derivatives: synthesis of potent A2B-selective adenosine receptor antagonists.
    Hayallah AM; Sandoval-Ramírez J; Reith U; Schobert U; Preiss B; Schumacher B; Daly JW; Müller CE
    J Med Chem; 2002 Mar; 45(7):1500-10. PubMed ID: 11906291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of human A(2B) adenosine receptors: radioligand binding, western blotting, and coupling to G(q) in human embryonic kidney 293 cells and HMC-1 mast cells.
    Linden J; Thai T; Figler H; Jin X; Robeva AS
    Mol Pharmacol; 1999 Oct; 56(4):705-13. PubMed ID: 10496952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-Phenylimidazo[2,1-i]purin-5-ones: structure-activity relationships and characterization of potent and selective inverse agonists at Human A3 adenosine receptors.
    Ozola V; Thorand M; Diekmann M; Qurishi R; Schumacher B; Jacobson KA; Müller CE
    Bioorg Med Chem; 2003 Feb; 11(3):347-56. PubMed ID: 12517430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A(2B) adenosine receptors.
    Kim YC; Ji X; Melman N; Linden J; Jacobson KA
    J Med Chem; 2000 Mar; 43(6):1165-72. PubMed ID: 10737749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5'-O-alkyl ethers of N,2-substituted adenosine derivatives: partial agonists for the adenosine A1 and A3 receptors.
    van Tilburg EW; van der Klein PA; von Frijtag Drabbe Künzel J; de Groote M; Stannek C; Lorenzen A; IJzerman AP
    J Med Chem; 2001 Aug; 44(18):2966-75. PubMed ID: 11520205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological characterisation and inhibitory effects of (2R,3R,4S,5R)-2-(6-amino-2-{[(1S)-2-hydroxy-1-(phenylmethyl)ethyl]amino}-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydro-3,4-furandiol, a novel ligand that demonstrates both adenosine A(2A) receptor agonist and adenosine A(3) receptor antagonist activity.
    Bevan N; Butchers PR; Cousins R; Coates J; Edgar EV; Morrison V; Sheehan MJ; Reeves J; Wilson DJ
    Eur J Pharmacol; 2007 Jun; 564(1-3):219-25. PubMed ID: 17382926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and pharmacological evaluation of novel 1,3,8- and 1,3,7,8-substituted xanthines as adenosine receptor antagonists.
    Rodríguez-Borges JE; García-Mera X; Balo MC; Brea J; Caamaño O; Fernández F; López C; Loza MI; Nieto MI
    Bioorg Med Chem; 2010 Mar; 18(5):2001-9. PubMed ID: 20137957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chalcone-based derivatives as new scaffolds for hA3 adenosine receptor antagonists.
    Vazquez-Rodriguez S; Matos MJ; Santana L; Uriarte E; Borges F; Kachler S; Klotz KN
    J Pharm Pharmacol; 2013 May; 65(5):697-703. PubMed ID: 23600387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity relationships of truncated adenosine derivatives as highly potent and selective human A3 adenosine receptor antagonists.
    Pal S; Choi WJ; Choe SA; Heller CL; Gao ZG; Chinn M; Jacobson KA; Hou X; Lee SK; Kim HO; Jeong LS
    Bioorg Med Chem; 2009 May; 17(10):3733-8. PubMed ID: 19375920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and pharmacological evaluation of novel 1- and 8-substituted-3-furfuryl xanthines as adenosine receptor antagonists.
    Balo MC; Brea J; Caamaño O; Fernández F; García-Mera X; López C; Loza MI; Nieto MI; Rodríguez-Borges JE
    Bioorg Med Chem; 2009 Sep; 17(18):6755-60. PubMed ID: 19682912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2,5'-Disubstituted adenosine derivatives: evaluation of selectivity and efficacy for the adenosine A(1), A(2A), and A(3) receptor.
    van Tilburg EW; von Frijtag Drabbe Kunzel J; de Groote M; IJzerman AP
    J Med Chem; 2002 Jan; 45(2):420-9. PubMed ID: 11784146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective allosteric enhancement of agonist binding and function at human A3 adenosine receptors by a series of imidazoquinoline derivatives.
    Gao ZG; Kim SG; Soltysiak KA; Melman N; IJzerman AP; Jacobson KA
    Mol Pharmacol; 2002 Jul; 62(1):81-9. PubMed ID: 12065758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.