BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1375 related articles for article (PubMed ID: 15476679)

  • 21. Characterization of 3',5' cyclic nucleotide phosphodiesterase activity in Y79 retinoblastoma cells: absence of functional PDE6.
    White JB; Thompson WJ; Pittler SJ
    Mol Vis; 2004 Oct; 10():738-49. PubMed ID: 15480303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exisulind, a novel proapoptotic drug, inhibits rat urinary bladder tumorigenesis.
    Piazza GA; Thompson WJ; Pamukcu R; Alila HW; Whitehead CM; Liu L; Fetter JR; Gresh WE; Klein-Szanto AJ; Farnell DR; Eto I; Grubbs CJ
    Cancer Res; 2001 May; 61(10):3961-8. PubMed ID: 11358813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram.
    Michie AM; Lobban M; Müller T; Harnett MM; Houslay MD
    Cell Signal; 1996 Feb; 8(2):97-110. PubMed ID: 8730511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of icariin on cGMP-specific PDE5 and cAMP-specific PDE4 activities.
    Xin ZC; Kim EK; Lin CS; Liu WJ; Tian L; Yuan YM; Fu J
    Asian J Androl; 2003 Mar; 5(1):15-8. PubMed ID: 12646997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered expression of cyclic nucleotide phosphodiesterase isozymes during culture of aortic endothelial cells.
    Ashikaga T; Strada SJ; Thompson WJ
    Biochem Pharmacol; 1997 Nov; 54(10):1071-9. PubMed ID: 9464449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A prenylated flavonol, sophoflavescenol: a potent and selective inhibitor of cGMP phosphodiesterase 5.
    Shin HJ; Kim HJ; Kwak JH; Chun HO; Kim JH; Park H; Kim DH; Lee YS
    Bioorg Med Chem Lett; 2002 Sep; 12(17):2313-6. PubMed ID: 12161123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, structure-activity relationships, and pharmacological profile of 9-amino-4-oxo-1-phenyl-3,4,6,7-tetrahydro[1,4]diazepino[6, 7,1-hi]indoles: discovery of potent, selective phosphodiesterase type 4 inhibitors.
    Burnouf C; Auclair E; Avenel N; Bertin B; Bigot C; Calvet A; Chan K; Durand C; Fasquelle V; Féru F; Gilbertsen R; Jacobelli H; Kebsi A; Lallier E; Maignel J; Martin B; Milano S; Ouagued M; Pascal Y; Pruniaux MP; Puaud J; Rocher MN; Terrasse C; Wrigglesworth R; Doherty AM
    J Med Chem; 2000 Dec; 43(25):4850-67. PubMed ID: 11123995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes.
    Rivet-Bastide M; Vandecasteele G; Hatem S; Verde I; Bénardeau A; Mercadier JJ; Fischmeister R
    J Clin Invest; 1997 Jun; 99(11):2710-8. PubMed ID: 9169501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rabbit corpus cavernosum smooth muscle shows a different phosphodiesterase profile than human corpus cavernosum.
    Qiu Y; Kraft P; Lombardi E; Clancy J
    J Urol; 2000 Sep; 164(3 Pt 1):882-6. PubMed ID: 10953172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discriminative stimulus effects of the type-4 phosphodiesterase inhibitor rolipram in rats.
    Makhay MM; Houslay MD; O'Donnell JM
    Psychopharmacology (Berl); 2001 Nov; 158(3):297-304. PubMed ID: 11713620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PDE4 and PDE5 regulate cyclic nucleotides relaxing effects in human umbilical arteries.
    Santos-Silva AJ; Cairrão E; Morgado M; Alvarez E; Verde I
    Eur J Pharmacol; 2008 Mar; 582(1-3):102-9. PubMed ID: 18234184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Profiling of cAMP and cGMP phosphodiesterases in isolated ventricular cardiomyocytes from human hearts: comparison with rat and guinea pig.
    Johnson WB; Katugampola S; Able S; Napier C; Harding SE
    Life Sci; 2012 Feb; 90(9-10):328-36. PubMed ID: 22261303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of relaxant responses evoked by a nitric oxide donor and by nonadrenergic, noncholinergic stimulation by isozyme-selective phosphodiesterase inhibitors in guinea pig trachea.
    Ellis JL; Conanan ND
    J Pharmacol Exp Ther; 1995 Mar; 272(3):997-1004. PubMed ID: 7891355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclic nucleotide phosphodiesterases (PDEs) in human osteoblastic cells; the effect of PDE inhibition on cAMP accumulation.
    Ahlström M; Pekkinen M; Huttunen M; Lamberg-Allardt C
    Cell Mol Biol Lett; 2005; 10(2):305-19. PubMed ID: 16010295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of visnagin on cyclic nucleotide phosphodiesterases and their role in its inhibitory effects on vascular smooth muscle contraction.
    Duarte J; Lugnier C; Torres AI; Pérez-Vizcaino F; Zarzuelo A; Tamargo J
    Gen Pharmacol; 1999 Jan; 32(1):71-4. PubMed ID: 9888257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hypertrophied right hearts get two for the price of one: can inhibiting phosphodiesterase type 5 also inhibit phosphodiesterase type 3?
    Kass DA
    Circulation; 2007 Jul; 116(3):233-5. PubMed ID: 17638937
    [No Abstract]   [Full Text] [Related]  

  • 37. Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic-3',5'-guanosine monophosphate-stimulated phosphodiesterase to reverse hypoxic pulmonary vasoconstriction in the perfused rat lung.
    Haynes J; Killilea DW; Peterson PD; Thompson WJ
    J Pharmacol Exp Ther; 1996 Feb; 276(2):752-7. PubMed ID: 8632346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Profiling of functional phosphodiesterase in mesangial cells using a CRE-SEAP-based reporting system.
    Zhu Y; Yao J; Meng Y; Kasai A; Hiramatsu N; Hayakawa K; Miida T; Takeda M; Okada M; Kitamura M
    Br J Pharmacol; 2006 Jul; 148(6):833-44. PubMed ID: 16751794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased expression of the cGMP-inhibited cAMP-specific (PDE3) and cGMP binding cGMP-specific (PDE5) phosphodiesterases in models of pulmonary hypertension.
    Murray F; MacLean MR; Pyne NJ
    Br J Pharmacol; 2002 Dec; 137(8):1187-94. PubMed ID: 12466227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of platelet activation by cyclic AMP turnover and cyclic nucleotide phosphodiesterase type-3.
    Feijge MA; Ansink K; Vanschoonbeek K; Heemskerk JW
    Biochem Pharmacol; 2004 Apr; 67(8):1559-67. PubMed ID: 15041473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 69.