These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 15476786)

  • 1. Interface motion of capillary-driven flow in rectangular microchannel.
    Ichikawa N; Hosokawa K; Maeda R
    J Colloid Interface Sci; 2004 Dec; 280(1):155-64. PubMed ID: 15476786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravity-induced reorientation of the interface between two liquids of different densities flowing laminarly through a microchannel.
    Yoon SK; Mitchell M; Choban ER; Kenis PJ
    Lab Chip; 2005 Nov; 5(11):1259-63. PubMed ID: 16234949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions.
    Fiddes LK; Raz N; Srigunapalan S; Tumarkan E; Simmons CA; Wheeler AR; Kumacheva E
    Biomaterials; 2010 May; 31(13):3459-64. PubMed ID: 20167361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dynamic contact angle on liquid infiltration into inclined capillary tubes: (semi)-analytical solutions.
    Hilpert M
    J Colloid Interface Sci; 2009 Sep; 337(1):138-44. PubMed ID: 19540506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels.
    Waghmare PR; Mitra SK
    J Colloid Interface Sci; 2010 Nov; 351(2):561-9. PubMed ID: 20813377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Durable hydrophilic microchannels with controlled morphology by the direct molding method.
    Yoon TH; Li M; Hong LY; Lee J; Kim DP
    Anal Chem; 2011 Mar; 83(6):1901-7. PubMed ID: 21348437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guidance of liver and kidney organotypic cultures inside rectangular silicone microchannels.
    Leclerc E; Corlu A; Griscom L; Baudoin R; Legallais C
    Biomaterials; 2006 Aug; 27(22):4109-19. PubMed ID: 16616777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.
    Yang X; Forouzan O; Burns JM; Shevkoplyas SS
    Lab Chip; 2011 Oct; 11(19):3231-40. PubMed ID: 21847500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dynamic contact angle on liquid withdrawal from capillary tubes: (semi)-analytical solutions.
    Hilpert M
    J Colloid Interface Sci; 2010 Jul; 347(2):315-23. PubMed ID: 20400087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary-assembled microchip for universal integration of various chemical functions onto a single microfluidic device.
    Hisamoto H; Nakashima Y; Kitamura C; Funano S; Yasuoka M; Morishima K; Kikutani Y; Kitamori T; Terabe S
    Anal Chem; 2004 Jun; 76(11):3222-8. PubMed ID: 15167805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of gravity-driven microfluidic device.
    Yamada H; Yoshida Y; Terada N; Hagihara S; Komatsu T; Terasawa A
    Rev Sci Instrum; 2008 Dec; 79(12):124301. PubMed ID: 19123582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explicit analytical solutions for liquid infiltration into capillary tubes: dynamic and constant contact angle.
    Hilpert M
    J Colloid Interface Sci; 2010 Apr; 344(1):198-208. PubMed ID: 20106483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ac dielectrophoresis of tin oxide nanobelts suspended in ethanol: manipulation and visualization.
    Kumar S; Peng Z; Shin H; Wang ZL; Hesketh PJ
    Anal Chem; 2010 Mar; 82(6):2204-12. PubMed ID: 20151680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-directed liquid flow inside microchannels.
    Zhao B; Moore JS; Beebe DJ
    Science; 2001 Feb; 291(5506):1023-6. PubMed ID: 11161212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical modeling of capillary flow in tubes of nonuniform cross section.
    Liou WW; Peng Y; Parker PE
    J Colloid Interface Sci; 2009 May; 333(1):389-99. PubMed ID: 19232635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of membrane-type microvalves in rectangular microfluidic channels via seal photopolymerization.
    Park W; Han S; Kwon S
    Lab Chip; 2010 Oct; 10(20):2814-7. PubMed ID: 20721367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C; Wisitsoraat A; Maturos T; Phokharatkul D; Sappat A; Jaruwongrungsee K; Lomas T; Tuantranont A
    Talanta; 2009 Sep; 79(4):995-1000. PubMed ID: 19615498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.