BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 15476857)

  • 1. Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers.
    Kwak MK; Wakabayashi N; Kensler TW
    Mutat Res; 2004 Nov; 555(1-2):133-48. PubMed ID: 15476857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival.
    Kwak MK; Wakabayashi N; Itoh K; Motohashi H; Yamamoto M; Kensler TW
    J Biol Chem; 2003 Mar; 278(10):8135-45. PubMed ID: 12506115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.
    Wakabayashi N; Dinkova-Kostova AT; Holtzclaw WD; Kang MI; Kobayashi A; Yamamoto M; Kensler TW; Talalay P
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2040-5. PubMed ID: 14764894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles.
    Itoh K; Tong KI; Yamamoto M
    Free Radic Biol Med; 2004 May; 36(10):1208-13. PubMed ID: 15110385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nrf2 as a novel molecular target for chemoprevention.
    Lee JS; Surh YJ
    Cancer Lett; 2005 Jun; 224(2):171-84. PubMed ID: 15914268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway.
    Hayes JD; McMahon M; Chowdhry S; Dinkova-Kostova AT
    Antioxid Redox Signal; 2010 Dec; 13(11):1713-48. PubMed ID: 20446772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds.
    Jeong WS; Jun M; Kong AN
    Antioxid Redox Signal; 2006; 8(1-2):99-106. PubMed ID: 16487042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants.
    Dinkova-Kostova AT; Holtzclaw WD; Cole RN; Itoh K; Wakabayashi N; Katoh Y; Yamamoto M; Talalay P
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11908-13. PubMed ID: 12193649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nrf2 as a target for cancer chemoprevention.
    Yu X; Kensler T
    Mutat Res; 2005 Dec; 591(1-2):93-102. PubMed ID: 16054659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents.
    Giudice A; Arra C; Turco MC
    Methods Mol Biol; 2010; 647():37-74. PubMed ID: 20694660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation.
    Kobayashi M; Yamamoto M
    Antioxid Redox Signal; 2005; 7(3-4):385-94. PubMed ID: 15706085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione.
    Kwak MK; Itoh K; Yamamoto M; Sutter TR; Kensler TW
    Mol Med; 2001 Feb; 7(2):135-45. PubMed ID: 11471548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism.
    Velichkova M; Hasson T
    Mol Cell Biol; 2005 Jun; 25(11):4501-13. PubMed ID: 15899855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes.
    Kang MI; Kobayashi A; Wakabayashi N; Kim SG; Yamamoto M
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2046-51. PubMed ID: 14764898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting NRF2 signaling for cancer chemoprevention.
    Kwak MK; Kensler TW
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):66-76. PubMed ID: 19732782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome.
    Katoh Y; Iida K; Kang MI; Kobayashi A; Mizukami M; Tong KI; McMahon M; Hayes JD; Itoh K; Yamamoto M
    Arch Biochem Biophys; 2005 Jan; 433(2):342-50. PubMed ID: 15581590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.
    Zhang DD; Hannink M
    Mol Cell Biol; 2003 Nov; 23(22):8137-51. PubMed ID: 14585973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles.
    Itoh K; Wakabayashi N; Katoh Y; Ishii T; O'Connor T; Yamamoto M
    Genes Cells; 2003 Apr; 8(4):379-91. PubMed ID: 12653965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nrf2-Keap1 defines a physiologically important stress response mechanism.
    Motohashi H; Yamamoto M
    Trends Mol Med; 2004 Nov; 10(11):549-57. PubMed ID: 15519281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.
    Kensler TW; Wakabayashi N; Biswal S
    Annu Rev Pharmacol Toxicol; 2007; 47():89-116. PubMed ID: 16968214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.