These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1547722)

  • 1. Basic fibroblast growth factor inhibits basal and stimulated relaxin secretion by cultured porcine luteal cells: analysis by reverse hemolytic plaque assay.
    Taylor MJ; Clark CL
    Endocrinology; 1992 Apr; 130(4):1951-6. PubMed ID: 1547722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of antimicrotubule agents on secretion of relaxin by large luteal cells derived from pregnant swine.
    Taylor MJ; Clark CL
    Endocrinology; 1990 Apr; 126(4):1790-5. PubMed ID: 2180679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of relaxin release from monodispersed porcine luteal cells: effect of calcium ionophore A23187 and calcium channel blockers.
    Taylor MJ; Clark CL
    Endocrinology; 1988 Oct; 123(4):1893-901. PubMed ID: 3138104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of relaxin release by cultured porcine luteal cells using a reverse hemolytic plaque assay: effects of arachidonic acid, cyclo- and lipooxygenase blockers, phospholipase A2, and melittin.
    Taylor MJ; Clark CL
    Endocrinology; 1989 Sep; 125(3):1389-97. PubMed ID: 2503367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that basal secretion of relaxin by individual cultured large luteal cells is influenced by mobilization of intracellular calcium: analysis by a reverse hemolytic plaque assay.
    Taylor MJ; Clark CL
    Cell Calcium; 1992 Oct; 13(9):571-80. PubMed ID: 1468119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-beta is a potent inhibitor of basal and stimulated relaxin release by porcine luteal cells maintained in monolayer culture.
    Taylor MJ; Clark CL
    J Endocrinol; 1992 Dec; 135(3):543-50. PubMed ID: 1487707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of relaxin release from cultured porcine luteal cells by reverse hemolytic plaque assay: influence of gestational age and prostaglandin F2 alpha.
    Taylor MJ; Clark CL; Frawley LS
    Endocrinology; 1987 May; 120(5):2085-91. PubMed ID: 3552631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of relaxin release by porcine luteal cells using a reverse hemolytic plaque assay: effect of prostaglandins E2 and F2 alpha, human chorionic gonadotropin, and oxytocin.
    Taylor MJ; Clark CL
    Biol Reprod; 1987 Sep; 37(2):377-84. PubMed ID: 3315014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulatory effect of phorbol diester on relaxin release by porcine luteal cells in culture.
    Taylor MJ; Clark CL
    Biol Reprod; 1988 Oct; 39(3):743-50. PubMed ID: 3196805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prostacyclin stimulates relaxin release from cultured porcine luteal cells.
    Taylor MJ; Clark CL
    Biol Reprod; 1987 Dec; 37(5):1241-7. PubMed ID: 3327542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of release of porcine relaxin by reverse haemolytic plaque assay: evidence for autoregulation.
    Taylor MJ; Clark CL
    J Endocrinol; 1988 Feb; 116(2):287-91. PubMed ID: 3280719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxin secretion by porcine large luteal cells: effect of protein synthesis inhibitors.
    Taylor MJ; Clark CL
    Proc Soc Exp Biol Med; 1993 Feb; 202(2):148-52. PubMed ID: 8424103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discordant secretion of relaxin by individual porcine large luteal cells: quantitative analysis by a reverse haemolytic plaque assay.
    Taylor MJ; Clark CL
    J Endocrinol; 1992 Jul; 134(1):77-83. PubMed ID: 1500846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of analogues of cyclic nucleotides and cholera toxin on relaxin release from cultured porcine luteal cells.
    Taylor MJ; Clark CL
    Biol Reprod; 1988 Mar; 38(2):315-23. PubMed ID: 2833944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of primate luteal function by recombinant human chorionic gonadotropin and modulation of steroid, but not relaxin, production by an inhibitor of 3 beta-hydroxysteroid dehydrogenase during simulated early pregnancy.
    Duffy DM; Hutchison JS; Stewart DR; Stouffer RL
    J Clin Endocrinol Metab; 1996 Jun; 81(6):2307-13. PubMed ID: 8964869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abrupt shifts in relaxin and progesterone secretion by aging luteal cells: luteotropic response in hysterectomized and pregnant pigs.
    Huang CJ; Stromer MH; Anderson LL
    Endocrinology; 1991 Jan; 128(1):165-73. PubMed ID: 1846096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of intraluteal implants of prostaglandin E1 or E2 on angiogenic growth factors in luteal tissue of Angus and Brahman cows.
    Weems YS; Ma Y; Ford SP; Nett TM; Vann RC; Lewis AW; Neuendorff DA; Welsh TH; Randel RD; Weems CW
    Theriogenology; 2014 Dec; 82(9):1224-30. PubMed ID: 25219846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luteotrophic effects of relaxin, chorionic gonadotrophin and FSH in common marmoset monkeys (Callithrix jacchus).
    Beindorff N; Einspanier A
    Reproduction; 2010 May; 139(5):923-30. PubMed ID: 20156883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute effect of basic fibroblast growth factor on secretion of prolactin as assessed by the reverse hemolytic plaque assay.
    Larson GH; Koos RD; Sortino MA; Wise PM
    Endocrinology; 1990 Feb; 126(2):927-32. PubMed ID: 2105207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of LH and PGE2 on progesterone secretion by small and large porcine luteal cells.
    Richards RG; Gadsby JE; Almond GW
    J Reprod Fertil; 1994 Sep; 102(1):27-34. PubMed ID: 7799322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.