BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 15477867)

  • 1. Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-kappaB activation.
    Wyke SM; Russell ST; Tisdale MJ
    Br J Cancer; 2004 Nov; 91(9):1742-50. PubMed ID: 15477867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased expression of the ubiquitin-proteasome pathway in murine myotubes by proteolysis-inducing factor (PIF) is associated with activation of the transcription factor NF-kappaB.
    Whitehouse AS; Tisdale MJ
    Br J Cancer; 2003 Sep; 89(6):1116-22. PubMed ID: 12966435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NF-kappaB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin-proteasome system in skeletal muscle.
    Wyke SM; Tisdale MJ
    Br J Cancer; 2005 Feb; 92(4):711-21. PubMed ID: 15714207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of protein catabolism in myotubes by 15(S)-hydroxyeicosatetraenoic acid through increased expression of the ubiquitin-proteasome pathway.
    Whitehouse AS; Khal J; Tisdale MJ
    Br J Cancer; 2003 Aug; 89(4):737-45. PubMed ID: 12915888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of protein kinase C and NF-kappaB in proteolysis-inducing factor-induced proteasome expression in C(2)C(12) myotubes.
    Smith HJ; Wyke SM; Tisdale MJ
    Br J Cancer; 2004 May; 90(9):1850-7. PubMed ID: 15150589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of protein degradation in skeletal muscle by a phorbol ester involves upregulation of the ubiquitin-proteasome proteolytic pathway.
    Wyke SM; Tisdale MJ
    Life Sci; 2006 May; 78(25):2898-910. PubMed ID: 16343552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the attenuation of proteolysis-inducing factor stimulated protein degradation in muscle by beta-hydroxy-beta-methylbutyrate.
    Smith HJ; Wyke SM; Tisdale MJ
    Cancer Res; 2004 Dec; 64(23):8731-5. PubMed ID: 15574784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia.
    Sanders PM; Russell ST; Tisdale MJ
    Br J Cancer; 2005 Aug; 93(4):425-34. PubMed ID: 16052213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of reactive oxygen species in protein degradation in murine myotubes induced by proteolysis-inducing factor and angiotensin II.
    Russell ST; Eley H; Tisdale MJ
    Cell Signal; 2007 Aug; 19(8):1797-806. PubMed ID: 17532611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of induction of muscle protein degradation by angiotensin II.
    Russell ST; Wyke SM; Tisdale MJ
    Cell Signal; 2006 Jul; 18(7):1087-96. PubMed ID: 16257180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting.
    Tisdale MJ
    J Support Oncol; 2005; 3(3):209-17. PubMed ID: 15915823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an in-vitro model system to investigate the mechanism of muscle protein catabolism induced by proteolysis-inducing factor.
    Gomes-Marcondes MC; Smith HJ; Cooper JC; Tisdale MJ
    Br J Cancer; 2002 May; 86(10):1628-33. PubMed ID: 12085214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal transduction pathways involved in proteolysis-inducing factor induced proteasome expression in murine myotubes.
    Smith HJ; Tisdale MJ
    Br J Cancer; 2003 Nov; 89(9):1783-8. PubMed ID: 14583784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional identity of receptors for proteolysis-inducing factor on human and murine skeletal muscle.
    Mirza KA; Tisdale MJ
    Br J Cancer; 2014 Aug; 111(5):903-8. PubMed ID: 25101564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer cachexia.
    Khal J; Wyke SM; Russell ST; Hine AV; Tisdale MJ
    Br J Cancer; 2005 Oct; 93(7):774-80. PubMed ID: 16160695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of apoptosis by a cachectic-factor in murine myotubes and inhibition by eicosapentaenoic acid.
    Smith HJ; Tisdale MJ
    Apoptosis; 2003 Mar; 8(2):161-9. PubMed ID: 12766476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid.
    Whitehouse AS; Smith HJ; Drake JL; Tisdale MJ
    Cancer Res; 2001 May; 61(9):3604-9. PubMed ID: 11325828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype.
    Chacon-Cabrera A; Mateu-Jimenez M; Langohr K; Fermoselle C; García-Arumí E; Andreu AL; Yelamos J; Barreiro E
    J Cell Physiol; 2017 Dec; 232(12):3744-3761. PubMed ID: 28177129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-noncoding RNA Atrolnc-1 promotes muscle wasting in mice with chronic kidney disease.
    Sun L; Si M; Liu X; Choi JM; Wang Y; Thomas SS; Peng H; Hu Z
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):962-974. PubMed ID: 30043444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation of proteolysis and muscle wasting by curcumin c3 complex in MAC16 colon tumour-bearing mice.
    Siddiqui RA; Hassan S; Harvey KA; Rasool T; Das T; Mukerji P; DeMichele S
    Br J Nutr; 2009 Oct; 102(7):967-75. PubMed ID: 19393114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.