These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 15478411)

  • 1. Resonance frequency of microbubbles: effect of viscosity.
    Khismatullin DB
    J Acoust Soc Am; 2004 Sep; 116(3):1463-73. PubMed ID: 15478411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbubble characterization through acoustically induced deflation.
    Guidi F; Vos HJ; Mori R; de Jong N; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):193-202. PubMed ID: 20040446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forced linear oscillations of microbubbles in blood capillaries.
    Sassaroli E; Hynynen K
    J Acoust Soc Am; 2004 Jun; 115(6):3235-43. PubMed ID: 15237848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound contrast agents: basic principles.
    Calliada F; Campani R; Bottinelli O; Bozzini A; Sommaruga MG
    Eur J Radiol; 1998 May; 27 Suppl 2():S157-60. PubMed ID: 9652516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles.
    Loughran J; Eckersley RJ; Tang MX
    J Acoust Soc Am; 2012 Jun; 131(6):4349-57. PubMed ID: 22712909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency relationships for ultrasonic activation of free microbubbles, encapsulated microbubbles, and gas-filled micropores.
    Miller DL
    J Acoust Soc Am; 1998 Oct; 104(4):2498-505. PubMed ID: 10491710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA; Bouakaz A
    Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):263-8. PubMed ID: 18977009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.
    Hosseinkhah N; Hynynen K
    Phys Med Biol; 2012 Feb; 57(3):785-808. PubMed ID: 22252221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic scattering cross sections of shell-encapsulated gas bubbles immersed in a viscoelastic liquid: first and second harmonics.
    Machado JC; Valente JS
    Ultrasonics; 2003 Nov; 41(8):605-13. PubMed ID: 14585472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound-induced encapsulated microbubble phenomena.
    Postema M; van Wamel A; Lancée CT; de Jong N
    Ultrasound Med Biol; 2004 Jun; 30(6):827-40. PubMed ID: 15219962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of encapsulation damping on the excitation threshold for subharmonic generation from contrast microbubbles.
    Katiyar A; Sarkar K
    J Acoust Soc Am; 2012 Nov; 132(5):3576-85. PubMed ID: 23145637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantages in using multifrequency excitation of contrast microbubbles for enhancing echo particle image velocimetry techniques: initial numerical studies using rectangular and triangular waves.
    Zheng H; Mukdadi O; Kim H; Hertzberg JR; Shandas R
    Ultrasound Med Biol; 2005 Jan; 31(1):99-108. PubMed ID: 15653236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of inter-bubble spacing on the resonance response of ultrasound contrast agent microbubbles.
    Yusefi H; Helfield B
    Ultrason Sonochem; 2022 Nov; 90():106191. PubMed ID: 36223708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of an elastic wall on the dynamics of an encapsulated microbubble: A simulation study.
    Aired L; Doinikov AA; Bouakaz A
    Ultrasonics; 2013 Jan; 53(1):23-8. PubMed ID: 22494471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of size range on ultrasound-induced translations in microbubble populations.
    Supponen O; Upadhyay A; Lum J; Guidi F; Murray T; Vos HJ; Tortoli P; Borden M
    J Acoust Soc Am; 2020 May; 147(5):3236. PubMed ID: 32486824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity.
    Helfield B; Chen X; Qin B; Villanueva FS
    J Acoust Soc Am; 2016 Jan; 139(1):204-14. PubMed ID: 26827018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.