BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15478438)

  • 21. Pressure and velocity profiles in a static mechanical hemilarynx model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2002 Dec; 112(6):2996-3003. PubMed ID: 12509021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of three-dimensional glottal geometry on intraglottal quasi-steady flow distributions and their relationship with phonation.
    Li S; Scherer RC; Wan M; Wang S
    Sci China C Life Sci; 2006 Feb; 49(1):82-8. PubMed ID: 16544579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unsteady behavior of flow in a scaled-up vocal folds model.
    Krane M; Barry M; Wei T
    J Acoust Soc Am; 2007 Dec; 122(6):3659-70. PubMed ID: 18247773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vocal fold bulging effects on phonation using a biophysical computer model.
    Alipour F; Scherer RC
    J Voice; 2000 Dec; 14(4):470-83. PubMed ID: 11130105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of oscillation of a mechanical hemilarynx model on mean transglottal pressures and flows.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1562-9. PubMed ID: 11572366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of flow separation location on phonation onset.
    Zhang Z
    J Acoust Soc Am; 2008 Sep; 124(3):1689-94. PubMed ID: 19045659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phonation threshold pressure: a missing link in glottal aerodynamics.
    Titze IR
    J Acoust Soc Am; 1992 May; 91(5):2926-35. PubMed ID: 1629485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the difference between negative damping and eigenmode synchronization as two phonation onset mechanisms.
    Zhang Z
    J Acoust Soc Am; 2011 Apr; 129(4):2163-7. PubMed ID: 21476671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees.
    Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intraglottal geometry and velocity measurements in canine larynges.
    Oren L; Khosla S; Gutmark E
    J Acoust Soc Am; 2014 Jan; 135(1):380-8. PubMed ID: 24437778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
    Fulcher LP; Scherer RC; Zhai G; Zhu Z
    J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling measured glottal volume velocity waveforms.
    Verneuil A; Berry DA; Kreiman J; Gerratt BR; Ye M; Berke GS
    Ann Otol Rhinol Laryngol; 2003 Feb; 112(2):120-31. PubMed ID: 12597284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical assessment of unsteady aerodynamic effects in phonation.
    Krane MH; Wei T
    J Acoust Soc Am; 2006 Sep; 120(3):1578-88. PubMed ID: 17004480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in glottal area associated with increasing airflow.
    Sercarz JA; Berke GS; Bielamowicz S; Kreiman J; Ye M; Green DC
    Ann Otol Rhinol Laryngol; 1994 Feb; 103(2):139-44. PubMed ID: 8311390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.