These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15478438)

  • 61. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S; Wan M; Wang S
    Sci China C Life Sci; 2008 Nov; 51(11):1045-51. PubMed ID: 18989648
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2007 Oct; 122(4):2279-95. PubMed ID: 17902864
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Unsteady flow through in-vitro models of the glottis.
    Hofmans GC; Groot G; Ranucci M; Graziani G; Hirschberg A
    J Acoust Soc Am; 2003 Mar; 113(3):1658-75. PubMed ID: 12656399
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sensitivity of odd-harmonic amplitudes to open quotient and skewing quotient in glottal airflow.
    Titze IR
    J Acoust Soc Am; 2015 Jan; 137(1):502-4. PubMed ID: 25618080
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Experimental study on the quasi-steady approximation of glottal flows.
    Honda T; Kanaya M; Tokuda IT; Bouvet A; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2022 May; 151(5):3129. PubMed ID: 35649918
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative.
    Vilkman E; Alku P; Vintturi J
    Folia Phoniatr Logop; 2002; 54(3):144-57. PubMed ID: 12077506
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Theoretical simulation and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models.
    Cisonni J; Van Hirtum A; Pelorson X; Willems J
    J Acoust Soc Am; 2008 Jul; 124(1):535-45. PubMed ID: 18646996
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nonstimulated rabbit phonation model: Cricothyroid approximation.
    Novaleski CK; Kojima T; Chang S; Luo H; Valenzuela CV; Rousseau B
    Laryngoscope; 2016 Jul; 126(7):1589-94. PubMed ID: 26971861
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Finite element simulation of glottal flow and pressure.
    Guo CG; Scherer RC
    J Acoust Soc Am; 1993 Aug; 94(2 Pt 1):688-700. PubMed ID: 8370874
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Glottal area waveform analysis of benign vocal fold lesions before and after surgery.
    Noordzij JP; Woo P
    Ann Otol Rhinol Laryngol; 2000 May; 109(5):441-6. PubMed ID: 10823471
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Realistic glottal motion and airflow rate during human breathing.
    Scheinherr A; Bailly L; Boiron O; Lagier A; Legou T; Pichelin M; Caillibotte G; Giovanni A
    Med Eng Phys; 2015 Sep; 37(9):829-39. PubMed ID: 26159687
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A flow waveform-matched low-dimensional glottal model based on physical knowledge.
    Drioli C
    J Acoust Soc Am; 2005 May; 117(5):3184-95. PubMed ID: 15957786
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Glottal area and vibratory patterns studied with simultaneous stroboscopy, flow glottography, and electroglottography.
    Hertegård S; Gauffin J
    J Speech Hear Res; 1995 Feb; 38(1):85-100. PubMed ID: 7731222
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Glottal closure, transglottal airflow, and voice quality in healthy middle-aged women.
    Södersten M; Hertegård S; Hammarberg B
    J Voice; 1995 Jun; 9(2):182-97. PubMed ID: 7620541
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Asymmetric glottal jet deflection: differences of two- and three-dimensional models.
    Mattheus W; Brücker C
    J Acoust Soc Am; 2011 Dec; 130(6):EL373-9. PubMed ID: 22225129
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Experimental validation of quasi-one-dimensional and two-dimensional steady glottal flow models.
    Cisonni J; Van Hirtum A; Luo XY; Pelorson X
    Med Biol Eng Comput; 2010 Sep; 48(9):903-10. PubMed ID: 20556662
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes.
    Schickhofer L; Mihaescu M
    J Biomech; 2020 Jan; 99():109484. PubMed ID: 31761432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.