These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15478439)

  • 1. Sound generation by steady flow through glottis-shaped orifices.
    Zhang Z; Mongeau L; Frankel SH; Thomson S; Park JB
    J Acoust Soc Am; 2004 Sep; 116(3):1720-8. PubMed ID: 15478439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband sound generation by confined pulsating jets in a mechanical model of the human larynx.
    Zhang Z; Mongeau LG
    J Acoust Soc Am; 2006 Jun; 119(6):3995-4005. PubMed ID: 16838542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes.
    Zhang Z; Mongeau L; Frankel SH
    J Acoust Soc Am; 2002 Oct; 112(4):1652-63. PubMed ID: 12398470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband sound generation by confined turbulent jets.
    Zhang Z; Mongeau L; Frankel SH
    J Acoust Soc Am; 2002 Aug; 112(2):677-89. PubMed ID: 12186047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes.
    Schickhofer L; Mihaescu M
    J Biomech; 2020 Jan; 99():109484. PubMed ID: 31761432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of glottal angle on intraglottal pressure.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model.
    Suh J; Frankel SH
    J Acoust Soc Am; 2007 Jun; 121(6):3728-39. PubMed ID: 17552723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional nature of the glottal jet.
    Triep M; Brücker C
    J Acoust Soc Am; 2010 Mar; 127(3):1537-47. PubMed ID: 20329854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of acoustic loading on an effective single mass model of the vocal folds.
    Zañartu M; Mongeau L; Wodicka GR
    J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instantaneous orifice discharge coefficient of a physical, driven model of the human larynx.
    Park JB; Mongeau L
    J Acoust Soc Am; 2007 Jan; 121(1):442-55. PubMed ID: 17297799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of glottis-interior sources in the production of voiced sound.
    Howe MS; McGowan RS
    J Acoust Soc Am; 2012 Feb; 131(2):1391-400. PubMed ID: 22352512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the tonal sound generation during phonation with and without glottis closure.
    Kniesburges S; Lodermeyer A; Semmler M; Schulz YK; Schützenberger A; Becker S
    J Acoust Soc Am; 2020 May; 147(5):3285. PubMed ID: 32486803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of three-dimensional glottal geometry on intraglottal quasi-steady flow distributions and their relationship with phonation.
    Li S; Scherer RC; Wan M; Wang S
    Sci China C Life Sci; 2006 Feb; 49(1):82-8. PubMed ID: 16544579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model.
    Xi J; Wang Z; Talaat K; Glide-Hurst C; Dong H
    Sleep Breath; 2018 May; 22(2):463-479. PubMed ID: 29101633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow-structure-acoustic interaction in a human voice model.
    Becker S; Kniesburges S; Müller S; Delgado A; Link G; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2009 Mar; 125(3):1351-61. PubMed ID: 19275292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.