These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Do we need STRFs for cocktail parties? On the relevance of physiologically motivated features for human speech perception derived from automatic speech recognition. Kollmeier B; Schädler MR; Meyer A; Anemüller J; Meyer BT Adv Exp Med Biol; 2013; 787():333-41. PubMed ID: 23716239 [TBL] [Abstract][Full Text] [Related]
7. [Automatic Classification of Dry Cough and Wet Cough Based on Improved Reverse Mel Frequency Cepstrum Coefficients]. Zhu C; Liu B; Li P; Mo H; Zheng Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):239-43. PubMed ID: 29708322 [TBL] [Abstract][Full Text] [Related]
8. Separable spectro-temporal Gabor filter bank features: Reducing the complexity of robust features for automatic speech recognition. Schädler MR; Kollmeier B J Acoust Soc Am; 2015 Apr; 137(4):2047-59. PubMed ID: 25920855 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of formant-like features on an automatic vowel classification task. de Wet F; Weber K; Boves L; Cranen B; Bengio S; Bourlard H J Acoust Soc Am; 2004 Sep; 116(3):1781-92. PubMed ID: 15478445 [TBL] [Abstract][Full Text] [Related]
10. Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition. Schädler M; Meyer BT; Kollmeier B J Acoust Soc Am; 2012 May; 131(5):4134-51. PubMed ID: 22559385 [TBL] [Abstract][Full Text] [Related]
11. A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception. Schädler MR; Warzybok A; Ewert SD; Kollmeier B J Acoust Soc Am; 2016 May; 139(5):2708. PubMed ID: 27250164 [TBL] [Abstract][Full Text] [Related]
12. Cochlea-inspired speech recognition interface. Russo M; Stella M; Sikora M; Šarić M Med Biol Eng Comput; 2019 Jun; 57(6):1393-1403. PubMed ID: 30830542 [TBL] [Abstract][Full Text] [Related]
13. Enhancing speech recognition using improved particle swarm optimization based hidden Markov model. Selvaraj L; Ganesan B ScientificWorldJournal; 2014; 2014():270576. PubMed ID: 25478588 [TBL] [Abstract][Full Text] [Related]
14. Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT. Toledano DT; Fernández-Gallego MP; Lozano-Diez A PLoS One; 2018; 13(10):e0205355. PubMed ID: 30304055 [TBL] [Abstract][Full Text] [Related]
15. A bio-inspired feature extraction for robust speech recognition. Zouhir Y; Ouni K Springerplus; 2014; 3():651. PubMed ID: 25485194 [TBL] [Abstract][Full Text] [Related]
16. [Research on biometric method of heart sound signal based on GMM]. Zhong L; Wan J; Huang Z; Guo X; Duan Y Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Mar; 37(2):92-5, 99. PubMed ID: 23777060 [TBL] [Abstract][Full Text] [Related]
17. Automatic detection of laryngeal pathologies in records of sustained vowels by means of mel-frequency cepstral coefficient parameters and differentiation of patients by sex. Fraile R; Sáenz-Lechón N; Godino-Llorente JI; Osma-Ruiz V; Fredouille C Folia Phoniatr Logop; 2009; 61(3):146-52. PubMed ID: 19571549 [TBL] [Abstract][Full Text] [Related]
18. [The perception of the tone and noise quality of a sound signal]. Malinnikova TG; Chernova EI; Chistovich IA Fiziol Zh Im I M Sechenova; 1995 Jul; 81(7):131-40. PubMed ID: 8714388 [TBL] [Abstract][Full Text] [Related]
19. Performance enhancement for audio-visual speaker identification using dynamic facial muscle model. Asadpour V; Towhidkhah F; Homayounpour MM Med Biol Eng Comput; 2006 Oct; 44(10):919-30. PubMed ID: 17031716 [TBL] [Abstract][Full Text] [Related]
20. Statistical modeling of speech Poincaré sections in combination of frequency analysis to improve speech recognition performance. Jafari A; Almasganj F; Bidhendi MN Chaos; 2010 Sep; 20(3):033106. PubMed ID: 20887046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]