These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15478967)

  • 1. Spherical Bragg reflector resonators.
    Tobar ME; Le Floch JM; Cros D; Krupka J; Anstie JD; Hartnett JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Sep; 51(9):1054-9. PubMed ID: 15478967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Q-factor distributed bragg reflector resonators with reflectors of arbitrary thickness.
    Le Floch JM; Tobar ME; Cros D; Krupka J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2689-95. PubMed ID: 18276575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Q-factor Bragg-reflection sapphire-loaded cavity TE01delta mode resonators.
    Hartnett JG; Tobar ME; Cros D; Krupka J; Guillon P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Dec; 49(12):1628-34. PubMed ID: 12546144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed bragg reflector resonators with cylindrical symmetry and extremely high Q-factors.
    Tobar ME; le Floch JM; Cros D; Hartnett JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):17-26. PubMed ID: 15742559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High performance distributed Bragg reflector microwave resonator.
    Flory CA; Taber RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):486-95. PubMed ID: 18244146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave oscillators incorporating high performance distributed Bragg reflector microwave resonators.
    Flory CA; Ko HL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):824-9. PubMed ID: 18244234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact, high-Q, zero temperature coefficient, TE011 sapphire-rutile microwave distributed Bragg reflector resonators.
    Tobar ME; Cros D; Blondy P; Ivanov EN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):821-9. PubMed ID: 11381707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Q Tamm plasmon-like resonance in spherical Bragg microcavity resonators.
    García-Puente Y; Auguié B; Kashyap R
    Opt Express; 2024 Mar; 32(6):9644-9655. PubMed ID: 38571194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-quality-factor Bragg onion resonators with omnidirectional reflector cladding.
    Xu Y; Liang W; Yariv A; Fleming JG; Lin SY
    Opt Lett; 2003 Nov; 28(22):2144-6. PubMed ID: 14649922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Q-Factor Enhancement of Thin-Film Piezoelectric-on-Silicon MEMS Resonator by Phononic Crystal-Reflector Composite Structure.
    Liu J; Workie TB; Wu T; Wu Z; Gong K; Bao J; Hashimoto KY
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33419352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modal analysis of Bragg onion resonators.
    Xu Y; Liang W; Yariv A; Fleming JG; Lin SY
    Opt Lett; 2004 Mar; 29(5):424-6. PubMed ID: 15005180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of acoustic substrate losses in 1850-MHz thin film BAW resonators.
    Pensala T; Thalhammer R; Dekker J; Kaitila J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2544-52. PubMed ID: 19942540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of electromagnetic radiation on the Q of quartz resonators.
    Yong YK; Patel M; Vig J; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):353-60. PubMed ID: 19251522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gires-Tournois resonators as ultra-narrowband perfect absorbers for infrared spectroscopic devices.
    Doan AT; Dao TD; Ishii S; Nagao T
    Opt Express; 2019 Jun; 27(12):A725-A737. PubMed ID: 31252849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BAW Resonator with an Optimized SiO
    Lv L; Shuai Y; Huang S; Zhu D; Wang Y; Luo W; Wu C; Zhang W
    ACS Omega; 2022 Jun; 7(24):20994-20999. PubMed ID: 35935285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized reflector stacks for solidly mounted bulk acoustic wave resonators.
    Jose S; Jansman AB; Hueting RJ; Schmitz J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2753-63. PubMed ID: 21156371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Q Tuneable 10-GHz Bragg Resonator for Oscillator Applications.
    Bale SJ; Deshpande PD; Hough M; Porter SJ; Everard JKA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Feb; 65(2):281-291. PubMed ID: 29389659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EPR UNIFORM FIELD SIGNAL ENHANCEMENT BY DIELECTRIC TUBES IN CAVITIES.
    Hyde JS; Mett RR
    Appl Magn Reson; 2017 Dec; 48(11-12):1185-1204. PubMed ID: 29332997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.